ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funi GIF version

Theorem funi 5346
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 4848 . 2 Rel I
2 relcnv 5102 . . . . 5 Rel I
3 coi2 5241 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 5129 . . . 4 I = I
64, 5eqtri 2250 . . 3 ( I ∘ I ) = I
76eqimssi 3280 . 2 ( I ∘ I ) ⊆ I
8 df-fun 5316 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 948 1 Fun I
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wss 3197   I cid 4376  ccnv 4715  ccom 4720  Rel wrel 4721  Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-fun 5316
This theorem is referenced by:  cnvresid  5391  fnresi  5437  fvi  5684  ssdomg  6920  residfi  7095  climshft2  11803
  Copyright terms: Public domain W3C validator