| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funi | GIF version | ||
| Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| funi | ⊢ Fun I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 4848 | . 2 ⊢ Rel I | |
| 2 | relcnv 5102 | . . . . 5 ⊢ Rel ◡ I | |
| 3 | coi2 5241 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
| 5 | cnvi 5129 | . . . 4 ⊢ ◡ I = I | |
| 6 | 4, 5 | eqtri 2250 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
| 7 | 6 | eqimssi 3280 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
| 8 | df-fun 5316 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
| 9 | 1, 7, 8 | mpbir2an 948 | 1 ⊢ Fun I |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊆ wss 3197 I cid 4376 ◡ccnv 4715 ∘ ccom 4720 Rel wrel 4721 Fun wfun 5308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-fun 5316 |
| This theorem is referenced by: cnvresid 5391 fnresi 5437 fvi 5684 ssdomg 6920 residfi 7095 climshft2 11803 |
| Copyright terms: Public domain | W3C validator |