| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funi | GIF version | ||
| Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| funi | ⊢ Fun I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 4812 | . 2 ⊢ Rel I | |
| 2 | relcnv 5066 | . . . . 5 ⊢ Rel ◡ I | |
| 3 | coi2 5205 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
| 5 | cnvi 5093 | . . . 4 ⊢ ◡ I = I | |
| 6 | 4, 5 | eqtri 2227 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
| 7 | 6 | eqimssi 3251 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
| 8 | df-fun 5279 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
| 9 | 1, 7, 8 | mpbir2an 945 | 1 ⊢ Fun I |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3168 I cid 4340 ◡ccnv 4679 ∘ ccom 4684 Rel wrel 4685 Fun wfun 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-fun 5279 |
| This theorem is referenced by: cnvresid 5354 fnresi 5400 fvi 5646 ssdomg 6880 residfi 7054 climshft2 11667 |
| Copyright terms: Public domain | W3C validator |