HomeHome Intuitionistic Logic Explorer
Theorem List (p. 53 of 144)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5201-5300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcsbiotag 5201* Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
(𝐴𝑉𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
 
2.6.8  Functions
 
Syntaxwfun 5202 Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.)
wff Fun 𝐴
 
Syntaxwfn 5203 Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.)
wff 𝐴 Fn 𝐵
 
Syntaxwf 5204 Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.)
wff 𝐹:𝐴𝐵
 
Syntaxwf1 5205 Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27.
wff 𝐹:𝐴1-1𝐵
 
Syntaxwfo 5206 Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27.
wff 𝐹:𝐴onto𝐵
 
Syntaxwf1o 5207 Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27.
wff 𝐹:𝐴1-1-onto𝐵
 
Syntaxcfv 5208 Extend the definition of a class to include the value of a function. (Read: The value of 𝐹 at 𝐴, or "𝐹 of 𝐴.")
class (𝐹𝐴)
 
Syntaxwiso 5209 Extend the definition of a wff to include the isomorphism property. (Read: 𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵.)
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
 
Definitiondf-fun 5210 Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun I is true (funi 5240). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4059 with the maps-to notation (see df-mpt 4061). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5211), a function with a given domain and codomain (df-f 5212), a one-to-one function (df-f1 5213), an onto function (df-fo 5214), or a one-to-one onto function (df-f1o 5215). For alternate definitions, see dffun2 5218, dffun4 5219, dffun6 5222, dffun7 5235, dffun8 5236, and dffun9 5237. (Contributed by NM, 1-Aug-1994.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
 
Definitiondf-fn 5211 Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
 
Definitiondf-f 5212 Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
 
Definitiondf-f1 5213 Define a one-to-one function. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
 
Definitiondf-fo 5214 Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
 
Definitiondf-f1o 5215 Define a one-to-one onto function. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
 
Definitiondf-fv 5216* Define the value of a function, (𝐹𝐴), also known as function application. For example, ( I ‘∅) = ∅. Typically, function 𝐹 is defined using maps-to notation (see df-mpt 4061), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9. We will later define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful. The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴," but without context-dependent notational ambiguity. (Contributed by NM, 1-Aug-1994.) Revised to use . (Revised by Scott Fenton, 6-Oct-2017.)
(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
 
Definitiondf-isom 5217* Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
 
Theoremdffun2 5218* Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
 
Theoremdffun4 5219* Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
 
Theoremdffun5r 5220* A way of proving a relation is a function, analogous to mo2r 2076. (Contributed by Jim Kingdon, 27-May-2020.)
((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
 
Theoremdffun6f 5221* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
 
Theoremdffun6 5222* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
(Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
 
Theoremfunmo 5223* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
 
Theoremdffun4f 5224* Definition of function like dffun4 5219 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
 
Theoremfunrel 5225 A function is a relation. (Contributed by NM, 1-Aug-1994.)
(Fun 𝐴 → Rel 𝐴)
 
Theorem0nelfun 5226 A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
(Fun 𝑅 → ∅ ∉ 𝑅)
 
Theoremfunss 5227 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
(𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
 
Theoremfuneq 5228 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
(𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
 
Theoremfuneqi 5229 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 = 𝐵       (Fun 𝐴 ↔ Fun 𝐵)
 
Theoremfuneqd 5230 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → (Fun 𝐴 ↔ Fun 𝐵))
 
Theoremnffun 5231 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
𝑥𝐹       𝑥Fun 𝐹
 
Theoremsbcfung 5232 Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
(𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
 
Theoremfuneu 5233* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfuneu2 5234* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
 
Theoremdffun7 5235* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5236 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
 
Theoremdffun8 5236* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5235. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
 
Theoremdffun9 5237* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
 
Theoremfunfn 5238 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴𝐴 Fn dom 𝐴)
 
Theoremfunfnd 5239 A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑 → Fun 𝐴)       (𝜑𝐴 Fn dom 𝐴)
 
Theoremfuni 5240 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Fun I
 
Theoremnfunv 5241 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
¬ Fun V
 
Theoremfunopg 5242 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
 
Theoremfunopab 5243* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
(Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
 
Theoremfunopabeq 5244* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
 
Theoremfunopab4 5245* A class of ordered pairs of values in the form used by df-mpt 4061 is a function. (Contributed by NM, 17-Feb-2013.)
Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
 
Theoremfunmpt 5246 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Fun (𝑥𝐴𝐵)
 
Theoremfunmpt2 5247 Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
𝐹 = (𝑥𝐴𝐵)       Fun 𝐹
 
Theoremfunco 5248 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
 
Theoremfunres 5249 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfunssres 5250 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
 
Theoremfun2ssres 5251 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfunun 5252 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
(((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
 
Theoremfuncnvsn 5253 The converse singleton of an ordered pair is a function. This is equivalent to funsn 5256 via cnvsn 5103, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Fun {⟨𝐴, 𝐵⟩}
 
Theoremfunsng 5254 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
 
Theoremfnsng 5255 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
 
Theoremfunsn 5256 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
𝐴 ∈ V    &   𝐵 ∈ V       Fun {⟨𝐴, 𝐵⟩}
 
Theoremfuninsn 5257 A function based on the singleton of an ordered pair. Unlike funsng 5254, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
 
Theoremfunprg 5258 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
 
Theoremfuntpg 5259 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
 
Theoremfunpr 5260 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
 
Theoremfuntp 5261 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
 
Theoremfnsn 5262 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩} Fn {𝐴}
 
Theoremfnprg 5263 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
 
Theoremfntpg 5264 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
 
Theoremfntp 5265 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
 
Theoremfun0 5266 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Fun ∅
 
Theoremfuncnvcnv 5267 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
(Fun 𝐴 → Fun 𝐴)
 
Theoremfuncnv2 5268* A simpler equivalence for single-rooted (see funcnv 5269). (Contributed by NM, 9-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv 5269* The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5268 for a simpler version. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv3 5270* A condition showing a class is single-rooted. (See funcnv 5269). (Contributed by NM, 26-May-2006.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
 
Theoremfuncnveq 5271* Another way of expressing that a class is single-rooted. Counterpart to dffun2 5218. (Contributed by Jim Kingdon, 24-Dec-2018.)
(Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
 
Theoremfun2cnv 5272* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
 
Theoremsvrelfun 5273 A single-valued relation is a function. (See fun2cnv 5272 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
 
Theoremfncnv 5274* Single-rootedness (see funcnv 5269) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
 
Theoremfun11 5275* Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
((Fun 𝐴 ∧ Fun 𝐴) ↔ ∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theoremfununi 5276* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfuncnvuni 5277* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5269 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfun11uni 5278* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
(∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
 
Theoremfunin 5279 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐹 → Fun (𝐹𝐺))
 
Theoremfunres11 5280 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfuncnvres 5281 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremcnvresid 5282 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
( I ↾ 𝐴) = ( I ↾ 𝐴)
 
Theoremfuncnvres2 5283 The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremfunimacnv 5284 The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
(Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
 
Theoremfunimass1 5285 A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 
Theoremfunimass2 5286 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremimadiflem 5287 One direction of imadif 5288. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
 
Theoremimadif 5288 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremimainlem 5289 One direction of imain 5290. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
(𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
 
Theoremimain 5290 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremfunimaexglem 5291 Lemma for funimaexg 5292. It constitutes the interesting part of funimaexg 5292, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
 
Theoremfunimaexg 5292 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremfunimaex 5293 The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
𝐵 ∈ V       (Fun 𝐴 → (𝐴𝐵) ∈ V)
 
Theoremisarep1 5294* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
(𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
 
Theoremisarep2 5295* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5293. (Contributed by NM, 26-Oct-2006.)
𝐴 ∈ V    &   𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)       𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
 
Theoremfneq1 5296 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2 5297 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq1d 5298 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2d 5299 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq12d 5300 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14399
  Copyright terms: Public domain < Previous  Next >