HomeHome Intuitionistic Logic Explorer
Theorem List (p. 53 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5201-5300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdffun6f 5201* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
 
Theoremdffun6 5202* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
(Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
 
Theoremfunmo 5203* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
 
Theoremdffun4f 5204* Definition of function like dffun4 5199 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
 
Theoremfunrel 5205 A function is a relation. (Contributed by NM, 1-Aug-1994.)
(Fun 𝐴 → Rel 𝐴)
 
Theorem0nelfun 5206 A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
(Fun 𝑅 → ∅ ∉ 𝑅)
 
Theoremfunss 5207 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
(𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
 
Theoremfuneq 5208 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
(𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
 
Theoremfuneqi 5209 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 = 𝐵       (Fun 𝐴 ↔ Fun 𝐵)
 
Theoremfuneqd 5210 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → (Fun 𝐴 ↔ Fun 𝐵))
 
Theoremnffun 5211 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
𝑥𝐹       𝑥Fun 𝐹
 
Theoremsbcfung 5212 Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
(𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
 
Theoremfuneu 5213* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfuneu2 5214* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
 
Theoremdffun7 5215* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5216 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
 
Theoremdffun8 5216* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5215. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
 
Theoremdffun9 5217* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
 
Theoremfunfn 5218 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴𝐴 Fn dom 𝐴)
 
Theoremfunfnd 5219 A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑 → Fun 𝐴)       (𝜑𝐴 Fn dom 𝐴)
 
Theoremfuni 5220 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Fun I
 
Theoremnfunv 5221 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
¬ Fun V
 
Theoremfunopg 5222 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
 
Theoremfunopab 5223* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
(Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
 
Theoremfunopabeq 5224* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
 
Theoremfunopab4 5225* A class of ordered pairs of values in the form used by df-mpt 4045 is a function. (Contributed by NM, 17-Feb-2013.)
Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
 
Theoremfunmpt 5226 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Fun (𝑥𝐴𝐵)
 
Theoremfunmpt2 5227 Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
𝐹 = (𝑥𝐴𝐵)       Fun 𝐹
 
Theoremfunco 5228 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
 
Theoremfunres 5229 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfunssres 5230 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
 
Theoremfun2ssres 5231 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfunun 5232 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
(((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
 
Theoremfuncnvsn 5233 The converse singleton of an ordered pair is a function. This is equivalent to funsn 5236 via cnvsn 5086, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Fun {⟨𝐴, 𝐵⟩}
 
Theoremfunsng 5234 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
 
Theoremfnsng 5235 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
 
Theoremfunsn 5236 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
𝐴 ∈ V    &   𝐵 ∈ V       Fun {⟨𝐴, 𝐵⟩}
 
Theoremfuninsn 5237 A function based on the singleton of an ordered pair. Unlike funsng 5234, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
 
Theoremfunprg 5238 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
 
Theoremfuntpg 5239 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
 
Theoremfunpr 5240 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
 
Theoremfuntp 5241 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
 
Theoremfnsn 5242 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩} Fn {𝐴}
 
Theoremfnprg 5243 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
 
Theoremfntpg 5244 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
 
Theoremfntp 5245 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
 
Theoremfun0 5246 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Fun ∅
 
Theoremfuncnvcnv 5247 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
(Fun 𝐴 → Fun 𝐴)
 
Theoremfuncnv2 5248* A simpler equivalence for single-rooted (see funcnv 5249). (Contributed by NM, 9-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv 5249* The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5248 for a simpler version. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv3 5250* A condition showing a class is single-rooted. (See funcnv 5249). (Contributed by NM, 26-May-2006.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
 
Theoremfuncnveq 5251* Another way of expressing that a class is single-rooted. Counterpart to dffun2 5198. (Contributed by Jim Kingdon, 24-Dec-2018.)
(Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
 
Theoremfun2cnv 5252* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
 
Theoremsvrelfun 5253 A single-valued relation is a function. (See fun2cnv 5252 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
 
Theoremfncnv 5254* Single-rootedness (see funcnv 5249) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
 
Theoremfun11 5255* Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
((Fun 𝐴 ∧ Fun 𝐴) ↔ ∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theoremfununi 5256* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfuncnvuni 5257* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5249 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfun11uni 5258* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
(∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
 
Theoremfunin 5259 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐹 → Fun (𝐹𝐺))
 
Theoremfunres11 5260 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfuncnvres 5261 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremcnvresid 5262 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
( I ↾ 𝐴) = ( I ↾ 𝐴)
 
Theoremfuncnvres2 5263 The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremfunimacnv 5264 The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
(Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
 
Theoremfunimass1 5265 A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 
Theoremfunimass2 5266 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremimadiflem 5267 One direction of imadif 5268. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
 
Theoremimadif 5268 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremimainlem 5269 One direction of imain 5270. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
(𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
 
Theoremimain 5270 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremfunimaexglem 5271 Lemma for funimaexg 5272. It constitutes the interesting part of funimaexg 5272, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
 
Theoremfunimaexg 5272 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremfunimaex 5273 The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
𝐵 ∈ V       (Fun 𝐴 → (𝐴𝐵) ∈ V)
 
Theoremisarep1 5274* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
(𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
 
Theoremisarep2 5275* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5273. (Contributed by NM, 26-Oct-2006.)
𝐴 ∈ V    &   𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)       𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
 
Theoremfneq1 5276 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2 5277 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq1d 5278 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2d 5279 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq12d 5280 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 
Theoremfneq12 5281 Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 
Theoremfneq1i 5282 Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹 Fn 𝐴𝐺 Fn 𝐴)
 
Theoremfneq2i 5283 Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
𝐴 = 𝐵       (𝐹 Fn 𝐴𝐹 Fn 𝐵)
 
Theoremnffn 5284 Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
𝑥𝐹    &   𝑥𝐴       𝑥 𝐹 Fn 𝐴
 
Theoremfnfun 5285 A function with domain is a function. (Contributed by NM, 1-Aug-1994.)
(𝐹 Fn 𝐴 → Fun 𝐹)
 
Theoremfnrel 5286 A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
(𝐹 Fn 𝐴 → Rel 𝐹)
 
Theoremfndm 5287 The domain of a function. (Contributed by NM, 2-Aug-1994.)
(𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
 
Theoremfunfni 5288 Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝜑)       ((𝐹 Fn 𝐴𝐵𝐴) → 𝜑)
 
Theoremfndmu 5289 A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)
 
Theoremfnbr 5290 The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
 
Theoremfnop 5291 The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
 
Theoremfneu 5292* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
 
Theoremfneu2 5293* There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
 
Theoremfnun 5294 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
 
Theoremfnunsn 5295 Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝜑𝑋 ∈ V)    &   (𝜑𝑌 ∈ V)    &   (𝜑𝐹 Fn 𝐷)    &   𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})    &   𝐸 = (𝐷 ∪ {𝑋})    &   (𝜑 → ¬ 𝑋𝐷)       (𝜑𝐺 Fn 𝐸)
 
Theoremfnco 5296 Composition of two functions. (Contributed by NM, 22-May-2006.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfnresdm 5297 A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
(𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
 
Theoremfnresdisj 5298 A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
(𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
 
Theorem2elresin 5299 Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
 
Theoremfnssresb 5300 Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
(𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >