![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfn | GIF version |
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 302 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 5257 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 dom cdm 4659 Fun wfun 5248 Fn wfn 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-fn 5257 |
This theorem is referenced by: funfnd 5285 funssxp 5423 funforn 5483 funbrfvb 5599 funopfvb 5600 ssimaex 5618 fvco 5627 eqfunfv 5660 fvimacnvi 5672 unpreima 5683 respreima 5686 elrnrexdm 5697 elrnrexdmb 5698 ffvresb 5721 funresdfunsnss 5761 resfunexg 5779 funex 5781 elunirn 5809 smores 6345 smores2 6347 tfrlem1 6361 funresdfunsndc 6559 fundmfibi 6997 resunimafz0 10902 fclim 11437 |
Copyright terms: Public domain | W3C validator |