Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfn | GIF version |
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 300 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 5191 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 186 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 dom cdm 4604 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 |
This theorem is referenced by: funfnd 5219 funssxp 5357 funforn 5417 funbrfvb 5529 funopfvb 5530 ssimaex 5547 fvco 5556 eqfunfv 5588 fvimacnvi 5599 unpreima 5610 respreima 5613 elrnrexdm 5624 elrnrexdmb 5625 ffvresb 5648 funresdfunsnss 5688 resfunexg 5706 funex 5708 elunirn 5734 smores 6260 smores2 6262 tfrlem1 6276 funresdfunsndc 6474 fundmfibi 6904 resunimafz0 10744 fclim 11235 |
Copyright terms: Public domain | W3C validator |