Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfn | GIF version |
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 300 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 5201 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 186 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 dom cdm 4611 Fun wfun 5192 Fn wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-fn 5201 |
This theorem is referenced by: funfnd 5229 funssxp 5367 funforn 5427 funbrfvb 5539 funopfvb 5540 ssimaex 5557 fvco 5566 eqfunfv 5598 fvimacnvi 5610 unpreima 5621 respreima 5624 elrnrexdm 5635 elrnrexdmb 5636 ffvresb 5659 funresdfunsnss 5699 resfunexg 5717 funex 5719 elunirn 5745 smores 6271 smores2 6273 tfrlem1 6287 funresdfunsndc 6485 fundmfibi 6916 resunimafz0 10766 fclim 11257 |
Copyright terms: Public domain | W3C validator |