ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn GIF version

Theorem funfn 5289
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn (Fun 𝐴𝐴 Fn dom 𝐴)

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2196 . . 3 dom 𝐴 = dom 𝐴
21biantru 302 . 2 (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
3 df-fn 5262 . 2 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
42, 3bitr4i 187 1 (Fun 𝐴𝐴 Fn dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  dom cdm 4664  Fun wfun 5253   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5262
This theorem is referenced by:  funfnd  5290  funssxp  5430  funforn  5490  funbrfvb  5606  funopfvb  5607  ssimaex  5625  fvco  5634  eqfunfv  5667  fvimacnvi  5679  unpreima  5690  respreima  5693  elrnrexdm  5704  elrnrexdmb  5705  ffvresb  5728  funresdfunsnss  5768  resfunexg  5786  funex  5788  elunirn  5816  smores  6359  smores2  6361  tfrlem1  6375  funresdfunsndc  6573  fundmfibi  7013  resunimafz0  10940  fclim  11476
  Copyright terms: Public domain W3C validator