ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn GIF version

Theorem funfn 5310
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn (Fun 𝐴𝐴 Fn dom 𝐴)

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2206 . . 3 dom 𝐴 = dom 𝐴
21biantru 302 . 2 (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
3 df-fn 5283 . 2 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
42, 3bitr4i 187 1 (Fun 𝐴𝐴 Fn dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  dom cdm 4683  Fun wfun 5274   Fn wfn 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-fn 5283
This theorem is referenced by:  funfnd  5311  funssxp  5455  funforn  5517  funbrfvb  5634  funopfvb  5635  ssimaex  5653  fvco  5662  eqfunfv  5695  fvimacnvi  5707  unpreima  5718  respreima  5721  elrnrexdm  5732  elrnrexdmb  5733  ffvresb  5756  funiun  5774  funresdfunsnss  5800  resfunexg  5818  funex  5820  elunirn  5848  smores  6391  smores2  6393  tfrlem1  6407  funresdfunsndc  6605  fundmfibi  7055  resunimafz0  10998  fclim  11680
  Copyright terms: Public domain W3C validator