ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn GIF version

Theorem funfn 5284
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn (Fun 𝐴𝐴 Fn dom 𝐴)

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2193 . . 3 dom 𝐴 = dom 𝐴
21biantru 302 . 2 (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
3 df-fn 5257 . 2 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
42, 3bitr4i 187 1 (Fun 𝐴𝐴 Fn dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  dom cdm 4659  Fun wfun 5248   Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5257
This theorem is referenced by:  funfnd  5285  funssxp  5423  funforn  5483  funbrfvb  5599  funopfvb  5600  ssimaex  5618  fvco  5627  eqfunfv  5660  fvimacnvi  5672  unpreima  5683  respreima  5686  elrnrexdm  5697  elrnrexdmb  5698  ffvresb  5721  funresdfunsnss  5761  resfunexg  5779  funex  5781  elunirn  5809  smores  6345  smores2  6347  tfrlem1  6361  funresdfunsndc  6559  fundmfibi  6997  resunimafz0  10902  fclim  11437
  Copyright terms: Public domain W3C validator