| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | GIF version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 302 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 5283 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 dom cdm 4683 Fun wfun 5274 Fn wfn 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-fn 5283 |
| This theorem is referenced by: funfnd 5311 funssxp 5455 funforn 5517 funbrfvb 5634 funopfvb 5635 ssimaex 5653 fvco 5662 eqfunfv 5695 fvimacnvi 5707 unpreima 5718 respreima 5721 elrnrexdm 5732 elrnrexdmb 5733 ffvresb 5756 funiun 5774 funresdfunsnss 5800 resfunexg 5818 funex 5820 elunirn 5848 smores 6391 smores2 6393 tfrlem1 6407 funresdfunsndc 6605 fundmfibi 7055 resunimafz0 10998 fclim 11680 |
| Copyright terms: Public domain | W3C validator |