![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfn | GIF version |
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2100 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 298 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 5062 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 186 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1299 dom cdm 4477 Fun wfun 5053 Fn wfn 5054 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1393 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 df-fn 5062 |
This theorem is referenced by: funfnd 5090 funssxp 5228 funforn 5288 funbrfvb 5396 funopfvb 5397 ssimaex 5414 fvco 5423 eqfunfv 5455 fvimacnvi 5466 unpreima 5477 respreima 5480 elrnrexdm 5491 elrnrexdmb 5492 ffvresb 5515 funresdfunsnss 5555 resfunexg 5573 funex 5575 elunirn 5599 smores 6119 smores2 6121 tfrlem1 6135 funresdfunsndc 6332 fundmfibi 6755 resunimafz0 10415 fclim 10902 |
Copyright terms: Public domain | W3C validator |