| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | GIF version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 302 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 5320 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 dom cdm 4718 Fun wfun 5311 Fn wfn 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5320 |
| This theorem is referenced by: funfnd 5348 funssxp 5492 funforn 5554 funbrfvb 5673 funopfvb 5674 ssimaex 5694 fvco 5703 eqfunfv 5736 fvimacnvi 5748 unpreima 5759 respreima 5762 elrnrexdm 5773 elrnrexdmb 5774 ffvresb 5797 funiun 5815 funresdfunsnss 5841 resfunexg 5859 funex 5861 elunirn 5889 smores 6436 smores2 6438 tfrlem1 6452 funresdfunsndc 6650 fundmfibi 7101 resunimafz0 11048 fclim 11800 ausgrumgrien 15962 |
| Copyright terms: Public domain | W3C validator |