ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrecap GIF version

Theorem dvrecap 13471
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrecap (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝑤,𝐴

Proof of Theorem dvrecap
Dummy variables 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5236 . . . . . . . . 9 Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
2 funforn 5427 . . . . . . . . 9 (Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ↔ (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
31, 2mpbi 144 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
4 fof 5420 . . . . . . . 8 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
53, 4ax-mp 5 . . . . . . 7 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
6 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
7 breq1 3992 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑤 # 0 ↔ 𝑥 # 0))
87elrab 2886 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
98biimpi 119 . . . . . . . . . . . 12 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
109adantl 275 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
1110simpld 111 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 ∈ ℂ)
1210simprd 113 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 # 0)
136, 11, 12divclapd 8707 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
1413ralrimiva 2543 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ)
15 eqid 2170 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
1615rnmptss 5657 . . . . . . . 8 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
1714, 16syl 14 . . . . . . 7 (𝐴 ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
18 fss 5359 . . . . . . 7 (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∧ ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
195, 17, 18sylancr 412 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
2015dmmpt 5106 . . . . . . 7 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V}
21 ssrab2 3232 . . . . . . . 8 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
22 ssrab2 3232 . . . . . . . 8 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ
2321, 22sstri 3156 . . . . . . 7 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ ℂ
2420, 23eqsstri 3179 . . . . . 6 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ
25 cnex 7898 . . . . . . 7 ℂ ∈ V
2625, 25elpm2 6658 . . . . . 6 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) ↔ ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ ∧ dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ))
2719, 24, 26sylanblrc 414 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ))
28 dvfcnpm 13453 . . . . 5 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
2927, 28syl 14 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
30 ssidd 3168 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
31 divclap 8595 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝐴 / 𝑥) ∈ ℂ)
32313expb 1199 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) → (𝐴 / 𝑥) ∈ ℂ)
338, 32sylan2b 285 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
3433fmpttd 5651 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
3522a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
3630, 34, 35dvbss 13448 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
37 elrabi 2883 . . . . . . . 8 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 ∈ ℂ)
3837adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ℂ)
39 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
4038sqcld 10607 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) ∈ ℂ)
41 breq1 3992 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤 # 0 ↔ 𝑦 # 0))
4241elrab 2886 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
4342simprbi 273 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 # 0)
4443adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 # 0)
45 sqap0 10542 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4638, 45syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4744, 46mpbird 166 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) # 0)
4839, 40, 47divclapd 8707 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) ∈ ℂ)
4948negcld 8217 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
50 simpr 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
51 eqid 2170 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5251cntoptop 13327 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
53 0cn 7912 . . . . . . . . . . 11 0 ∈ ℂ
54 cnopnap 13388 . . . . . . . . . . 11 (0 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − )))
5553, 54ax-mp 5 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))
56 isopn3i 12929 . . . . . . . . . 10 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))) → ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
5752, 55, 56mp2an 424 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0}
5850, 57eleqtrrdi 2264 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}))
5938sqvald 10606 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) = (𝑦 · 𝑦))
6059oveq2d 5869 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
6139, 38, 38, 44, 44divdivap1d 8739 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
6260, 61eqtr4d 2206 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
6362negeqd 8114 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
6439, 38, 44divclapd 8707 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑦) ∈ ℂ)
6564, 38, 44divnegapd 8720 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
6663, 65eqtrd 2203 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
6764negcld 8217 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / 𝑦) ∈ ℂ)
68 eqid 2170 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧))
6968cdivcncfap 13381 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
7067, 69syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
71 oveq2 5861 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
7270, 50, 71cnmptlimc 13437 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
7366, 72eqeltrd 2247 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
74 cncff 13358 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7570, 74syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7622a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
7775, 76limcdifap 13425 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
78 elrabi 2883 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
7978adantl 275 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
80 breq1 3992 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
8180elrab 2886 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8279, 81sylib 121 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8382simpld 111 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ ℂ)
8437ad2antlr 486 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ ℂ)
8583, 84subcld 8230 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) ∈ ℂ)
8664adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑦) ∈ ℂ)
8781simprbi 273 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑧 # 0)
8879, 87syl 14 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 0)
8986, 83, 88divclapd 8707 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
90 mulneg12 8316 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9185, 89, 90syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9284, 83, 89subdird 8334 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
9383, 84negsubdi2d 8246 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝑧𝑦) = (𝑦𝑧))
9493oveq1d 5868 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
95 oveq2 5861 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
96 simpll 524 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝐴 ∈ ℂ)
9796, 83, 88divclapd 8707 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑧) ∈ ℂ)
9815, 95, 79, 97fvmptd3 5589 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
9943ad2antlr 486 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 # 0)
10096, 84, 99divcanap2d 8709 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
101100oveq1d 5868 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
10284, 86, 83, 88divassapd 8743 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
10398, 101, 1023eqtr2d 2209 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
104 oveq2 5861 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
10550adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
10615, 104, 105, 86fvmptd3 5589 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
10786, 83, 88divcanap2d 8709 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
108106, 107eqtr4d 2206 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
109103, 108oveq12d 5871 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
11092, 94, 1093eqtr4d 2213 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)))
11186, 83, 88divnegapd 8720 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
112111oveq2d 5869 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
11391, 110, 1123eqtr3d 2211 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
114113oveq1d 5868 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
11586negcld 8217 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝐴 / 𝑦) ∈ ℂ)
116115, 83, 88divclapd 8707 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
117 breq1 3992 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑧 → (𝑘 # 𝑦𝑧 # 𝑦))
118117elrab 2886 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↔ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ 𝑧 # 𝑦))
119118simprbi 273 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 # 𝑦)
120119adantl 275 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 𝑦)
12183, 84, 120subap0d 8563 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) # 0)
122116, 85, 121divcanap3d 8712 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
123114, 122eqtrd 2203 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
124123mpteq2dva 4079 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
125 ssrab2 3232 . . . . . . . . . . . . 13 {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
126 resmpt 4939 . . . . . . . . . . . . 13 ({𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
127125, 126ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧))
128124, 127eqtr4di 2221 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}))
129128oveq1d 5868 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
13077, 129eqtr4d 2206 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13173, 130eleqtrd 2249 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13251cntoptopon 13326 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
133132toponrestid 12813 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
134 eqid 2170 . . . . . . . . 9 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
135 ssidd 3168 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ℂ ⊆ ℂ)
13634adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
137133, 51, 134, 135, 136, 76eldvap 13445 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
13858, 131, 137mpbir2and 939 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
139 breldmg 4817 . . . . . . 7 ((𝑦 ∈ ℂ ∧ -(𝐴 / (𝑦↑2)) ∈ ℂ ∧ 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2))) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14038, 49, 138, 139syl3anc 1233 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14136, 140eqelssd 3166 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
142141feq2d 5335 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ))
14329, 142mpbid 146 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
144143ffnd 5348 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
14511sqcld 10607 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) ∈ ℂ)
146 sqap0 10542 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14711, 146syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14812, 147mpbird 166 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) # 0)
1496, 145, 148divclapd 8707 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑥↑2)) ∈ ℂ)
150149negcld 8217 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑥↑2)) ∈ ℂ)
151150ralrimiva 2543 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ)
152 eqid 2170 . . . 4 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))
153152fnmpt 5324 . . 3 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
154151, 153syl 14 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
15529ffund 5351 . . . . 5 (𝐴 ∈ ℂ → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
156155adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
157 funbrfv 5535 . . . 4 (Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
158156, 138, 157sylc 62 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
159 oveq1 5860 . . . . . 6 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
160159oveq2d 5869 . . . . 5 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
161160negeqd 8114 . . . 4 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
162152, 161, 50, 49fvmptd3 5589 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
163158, 162eqtr4d 2206 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
164144, 154, 163eqfnfvd 5596 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  {crab 2452  Vcvv 2730  wss 3121   class class class wbr 3989  cmpt 4050  dom cdm 4611  ran crn 4612  cres 4613  ccom 4615  Fun wfun 5192   Fn wfn 5193  wf 5194  ontowfo 5196  cfv 5198  (class class class)co 5853  pm cpm 6627  cc 7772  0cc0 7774   · cmul 7779  cmin 8090  -cneg 8091   # cap 8500   / cdiv 8589  2c2 8929  cexp 10475  abscabs 10961  MetOpencmopn 12779  Topctop 12789  intcnt 12887  cnccncf 13351   lim climc 13417   D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator