ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrecap GIF version

Theorem dvrecap 13317
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrecap (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝑤,𝐴

Proof of Theorem dvrecap
Dummy variables 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5226 . . . . . . . . 9 Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
2 funforn 5417 . . . . . . . . 9 (Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ↔ (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
31, 2mpbi 144 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
4 fof 5410 . . . . . . . 8 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
53, 4ax-mp 5 . . . . . . 7 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
6 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
7 breq1 3985 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑤 # 0 ↔ 𝑥 # 0))
87elrab 2882 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
98biimpi 119 . . . . . . . . . . . 12 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
109adantl 275 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
1110simpld 111 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 ∈ ℂ)
1210simprd 113 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 # 0)
136, 11, 12divclapd 8686 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
1413ralrimiva 2539 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ)
15 eqid 2165 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
1615rnmptss 5646 . . . . . . . 8 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
1714, 16syl 14 . . . . . . 7 (𝐴 ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
18 fss 5349 . . . . . . 7 (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∧ ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
195, 17, 18sylancr 411 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
2015dmmpt 5099 . . . . . . 7 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V}
21 ssrab2 3227 . . . . . . . 8 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
22 ssrab2 3227 . . . . . . . 8 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ
2321, 22sstri 3151 . . . . . . 7 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ ℂ
2420, 23eqsstri 3174 . . . . . 6 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ
25 cnex 7877 . . . . . . 7 ℂ ∈ V
2625, 25elpm2 6646 . . . . . 6 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) ↔ ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ ∧ dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ))
2719, 24, 26sylanblrc 413 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ))
28 dvfcnpm 13299 . . . . 5 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
2927, 28syl 14 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
30 ssidd 3163 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
31 divclap 8574 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝐴 / 𝑥) ∈ ℂ)
32313expb 1194 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) → (𝐴 / 𝑥) ∈ ℂ)
338, 32sylan2b 285 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
3433fmpttd 5640 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
3522a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
3630, 34, 35dvbss 13294 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
37 elrabi 2879 . . . . . . . 8 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 ∈ ℂ)
3837adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ℂ)
39 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
4038sqcld 10586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) ∈ ℂ)
41 breq1 3985 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤 # 0 ↔ 𝑦 # 0))
4241elrab 2882 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
4342simprbi 273 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 # 0)
4443adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 # 0)
45 sqap0 10521 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4638, 45syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4744, 46mpbird 166 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) # 0)
4839, 40, 47divclapd 8686 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) ∈ ℂ)
4948negcld 8196 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
50 simpr 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
51 eqid 2165 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5251cntoptop 13173 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
53 0cn 7891 . . . . . . . . . . 11 0 ∈ ℂ
54 cnopnap 13234 . . . . . . . . . . 11 (0 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − )))
5553, 54ax-mp 5 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))
56 isopn3i 12775 . . . . . . . . . 10 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))) → ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
5752, 55, 56mp2an 423 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0}
5850, 57eleqtrrdi 2260 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}))
5938sqvald 10585 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) = (𝑦 · 𝑦))
6059oveq2d 5858 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
6139, 38, 38, 44, 44divdivap1d 8718 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
6260, 61eqtr4d 2201 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
6362negeqd 8093 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
6439, 38, 44divclapd 8686 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑦) ∈ ℂ)
6564, 38, 44divnegapd 8699 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
6663, 65eqtrd 2198 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
6764negcld 8196 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / 𝑦) ∈ ℂ)
68 eqid 2165 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧))
6968cdivcncfap 13227 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
7067, 69syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
71 oveq2 5850 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
7270, 50, 71cnmptlimc 13283 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
7366, 72eqeltrd 2243 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
74 cncff 13204 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7570, 74syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7622a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
7775, 76limcdifap 13271 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
78 elrabi 2879 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
7978adantl 275 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
80 breq1 3985 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
8180elrab 2882 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8279, 81sylib 121 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8382simpld 111 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ ℂ)
8437ad2antlr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ ℂ)
8583, 84subcld 8209 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) ∈ ℂ)
8664adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑦) ∈ ℂ)
8781simprbi 273 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑧 # 0)
8879, 87syl 14 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 0)
8986, 83, 88divclapd 8686 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
90 mulneg12 8295 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9185, 89, 90syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9284, 83, 89subdird 8313 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
9383, 84negsubdi2d 8225 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝑧𝑦) = (𝑦𝑧))
9493oveq1d 5857 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
95 oveq2 5850 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
96 simpll 519 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝐴 ∈ ℂ)
9796, 83, 88divclapd 8686 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑧) ∈ ℂ)
9815, 95, 79, 97fvmptd3 5579 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
9943ad2antlr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 # 0)
10096, 84, 99divcanap2d 8688 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
101100oveq1d 5857 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
10284, 86, 83, 88divassapd 8722 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
10398, 101, 1023eqtr2d 2204 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
104 oveq2 5850 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
10550adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
10615, 104, 105, 86fvmptd3 5579 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
10786, 83, 88divcanap2d 8688 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
108106, 107eqtr4d 2201 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
109103, 108oveq12d 5860 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
11092, 94, 1093eqtr4d 2208 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)))
11186, 83, 88divnegapd 8699 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
112111oveq2d 5858 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
11391, 110, 1123eqtr3d 2206 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
114113oveq1d 5857 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
11586negcld 8196 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝐴 / 𝑦) ∈ ℂ)
116115, 83, 88divclapd 8686 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
117 breq1 3985 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑧 → (𝑘 # 𝑦𝑧 # 𝑦))
118117elrab 2882 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↔ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ 𝑧 # 𝑦))
119118simprbi 273 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 # 𝑦)
120119adantl 275 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 𝑦)
12183, 84, 120subap0d 8542 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) # 0)
122116, 85, 121divcanap3d 8691 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
123114, 122eqtrd 2198 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
124123mpteq2dva 4072 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
125 ssrab2 3227 . . . . . . . . . . . . 13 {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
126 resmpt 4932 . . . . . . . . . . . . 13 ({𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
127125, 126ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧))
128124, 127eqtr4di 2217 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}))
129128oveq1d 5857 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
13077, 129eqtr4d 2201 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13173, 130eleqtrd 2245 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13251cntoptopon 13172 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
133132toponrestid 12659 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
134 eqid 2165 . . . . . . . . 9 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
135 ssidd 3163 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ℂ ⊆ ℂ)
13634adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
137133, 51, 134, 135, 136, 76eldvap 13291 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
13858, 131, 137mpbir2and 934 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
139 breldmg 4810 . . . . . . 7 ((𝑦 ∈ ℂ ∧ -(𝐴 / (𝑦↑2)) ∈ ℂ ∧ 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2))) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14038, 49, 138, 139syl3anc 1228 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14136, 140eqelssd 3161 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
142141feq2d 5325 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ))
14329, 142mpbid 146 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
144143ffnd 5338 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
14511sqcld 10586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) ∈ ℂ)
146 sqap0 10521 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14711, 146syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14812, 147mpbird 166 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) # 0)
1496, 145, 148divclapd 8686 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑥↑2)) ∈ ℂ)
150149negcld 8196 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑥↑2)) ∈ ℂ)
151150ralrimiva 2539 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ)
152 eqid 2165 . . . 4 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))
153152fnmpt 5314 . . 3 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
154151, 153syl 14 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
15529ffund 5341 . . . . 5 (𝐴 ∈ ℂ → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
156155adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
157 funbrfv 5525 . . . 4 (Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
158156, 138, 157sylc 62 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
159 oveq1 5849 . . . . . 6 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
160159oveq2d 5858 . . . . 5 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
161160negeqd 8093 . . . 4 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
162152, 161, 50, 49fvmptd3 5579 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
163158, 162eqtr4d 2201 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
164144, 154, 163eqfnfvd 5586 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  {crab 2448  Vcvv 2726  wss 3116   class class class wbr 3982  cmpt 4043  dom cdm 4604  ran crn 4605  cres 4606  ccom 4608  Fun wfun 5182   Fn wfn 5183  wf 5184  ontowfo 5186  cfv 5188  (class class class)co 5842  pm cpm 6615  cc 7751  0cc0 7753   · cmul 7758  cmin 8069  -cneg 8070   # cap 8479   / cdiv 8568  2c2 8908  cexp 10454  abscabs 10939  MetOpencmopn 12625  Topctop 12635  intcnt 12733  cnccncf 13197   lim climc 13263   D cdv 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator