ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrecap GIF version

Theorem dvrecap 13844
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrecap (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝑤,𝐴

Proof of Theorem dvrecap
Dummy variables 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5250 . . . . . . . . 9 Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
2 funforn 5441 . . . . . . . . 9 (Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ↔ (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
31, 2mpbi 145 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
4 fof 5434 . . . . . . . 8 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
53, 4ax-mp 5 . . . . . . 7 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
6 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
7 breq1 4003 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑤 # 0 ↔ 𝑥 # 0))
87elrab 2893 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
98biimpi 120 . . . . . . . . . . . 12 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
109adantl 277 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
1110simpld 112 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 ∈ ℂ)
1210simprd 114 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 # 0)
136, 11, 12divclapd 8736 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
1413ralrimiva 2550 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ)
15 eqid 2177 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
1615rnmptss 5673 . . . . . . . 8 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
1714, 16syl 14 . . . . . . 7 (𝐴 ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
18 fss 5373 . . . . . . 7 (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∧ ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
195, 17, 18sylancr 414 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
2015dmmpt 5120 . . . . . . 7 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V}
21 ssrab2 3240 . . . . . . . 8 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
22 ssrab2 3240 . . . . . . . 8 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ
2321, 22sstri 3164 . . . . . . 7 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ ℂ
2420, 23eqsstri 3187 . . . . . 6 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ
25 cnex 7926 . . . . . . 7 ℂ ∈ V
2625, 25elpm2 6674 . . . . . 6 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) ↔ ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ ∧ dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ))
2719, 24, 26sylanblrc 416 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ))
28 dvfcnpm 13826 . . . . 5 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
2927, 28syl 14 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
30 ssidd 3176 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
31 divclap 8624 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝐴 / 𝑥) ∈ ℂ)
32313expb 1204 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) → (𝐴 / 𝑥) ∈ ℂ)
338, 32sylan2b 287 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
3433fmpttd 5667 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
3522a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
3630, 34, 35dvbss 13821 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
37 elrabi 2890 . . . . . . . 8 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 ∈ ℂ)
3837adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ℂ)
39 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
4038sqcld 10637 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) ∈ ℂ)
41 breq1 4003 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤 # 0 ↔ 𝑦 # 0))
4241elrab 2893 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
4342simprbi 275 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 # 0)
4443adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 # 0)
45 sqap0 10572 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4638, 45syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4744, 46mpbird 167 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) # 0)
4839, 40, 47divclapd 8736 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) ∈ ℂ)
4948negcld 8245 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
50 simpr 110 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
51 eqid 2177 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5251cntoptop 13700 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
53 0cn 7940 . . . . . . . . . . 11 0 ∈ ℂ
54 cnopnap 13761 . . . . . . . . . . 11 (0 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − )))
5553, 54ax-mp 5 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))
56 isopn3i 13302 . . . . . . . . . 10 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))) → ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
5752, 55, 56mp2an 426 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0}
5850, 57eleqtrrdi 2271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}))
5938sqvald 10636 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) = (𝑦 · 𝑦))
6059oveq2d 5885 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
6139, 38, 38, 44, 44divdivap1d 8768 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
6260, 61eqtr4d 2213 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
6362negeqd 8142 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
6439, 38, 44divclapd 8736 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑦) ∈ ℂ)
6564, 38, 44divnegapd 8749 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
6663, 65eqtrd 2210 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
6764negcld 8245 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / 𝑦) ∈ ℂ)
68 eqid 2177 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧))
6968cdivcncfap 13754 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
7067, 69syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
71 oveq2 5877 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
7270, 50, 71cnmptlimc 13810 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
7366, 72eqeltrd 2254 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
74 cncff 13731 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7570, 74syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7622a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
7775, 76limcdifap 13798 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
78 elrabi 2890 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
7978adantl 277 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
80 breq1 4003 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
8180elrab 2893 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8279, 81sylib 122 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8382simpld 112 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ ℂ)
8437ad2antlr 489 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ ℂ)
8583, 84subcld 8258 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) ∈ ℂ)
8664adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑦) ∈ ℂ)
8781simprbi 275 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑧 # 0)
8879, 87syl 14 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 0)
8986, 83, 88divclapd 8736 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
90 mulneg12 8344 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9185, 89, 90syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9284, 83, 89subdird 8362 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
9383, 84negsubdi2d 8274 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝑧𝑦) = (𝑦𝑧))
9493oveq1d 5884 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
95 oveq2 5877 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
96 simpll 527 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝐴 ∈ ℂ)
9796, 83, 88divclapd 8736 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑧) ∈ ℂ)
9815, 95, 79, 97fvmptd3 5605 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
9943ad2antlr 489 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 # 0)
10096, 84, 99divcanap2d 8738 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
101100oveq1d 5884 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
10284, 86, 83, 88divassapd 8772 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
10398, 101, 1023eqtr2d 2216 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
104 oveq2 5877 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
10550adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
10615, 104, 105, 86fvmptd3 5605 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
10786, 83, 88divcanap2d 8738 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
108106, 107eqtr4d 2213 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
109103, 108oveq12d 5887 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
11092, 94, 1093eqtr4d 2220 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)))
11186, 83, 88divnegapd 8749 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
112111oveq2d 5885 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
11391, 110, 1123eqtr3d 2218 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
114113oveq1d 5884 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
11586negcld 8245 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝐴 / 𝑦) ∈ ℂ)
116115, 83, 88divclapd 8736 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
117 breq1 4003 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑧 → (𝑘 # 𝑦𝑧 # 𝑦))
118117elrab 2893 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↔ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ 𝑧 # 𝑦))
119118simprbi 275 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 # 𝑦)
120119adantl 277 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 𝑦)
12183, 84, 120subap0d 8591 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) # 0)
122116, 85, 121divcanap3d 8741 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
123114, 122eqtrd 2210 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
124123mpteq2dva 4090 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
125 ssrab2 3240 . . . . . . . . . . . . 13 {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
126 resmpt 4951 . . . . . . . . . . . . 13 ({𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
127125, 126ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧))
128124, 127eqtr4di 2228 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}))
129128oveq1d 5884 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
13077, 129eqtr4d 2213 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13173, 130eleqtrd 2256 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13251cntoptopon 13699 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
133132toponrestid 13186 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
134 eqid 2177 . . . . . . . . 9 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
135 ssidd 3176 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ℂ ⊆ ℂ)
13634adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
137133, 51, 134, 135, 136, 76eldvap 13818 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
13858, 131, 137mpbir2and 944 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
139 breldmg 4829 . . . . . . 7 ((𝑦 ∈ ℂ ∧ -(𝐴 / (𝑦↑2)) ∈ ℂ ∧ 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2))) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14038, 49, 138, 139syl3anc 1238 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14136, 140eqelssd 3174 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
142141feq2d 5349 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ))
14329, 142mpbid 147 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
144143ffnd 5362 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
14511sqcld 10637 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) ∈ ℂ)
146 sqap0 10572 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14711, 146syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14812, 147mpbird 167 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) # 0)
1496, 145, 148divclapd 8736 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑥↑2)) ∈ ℂ)
150149negcld 8245 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑥↑2)) ∈ ℂ)
151150ralrimiva 2550 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ)
152 eqid 2177 . . . 4 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))
153152fnmpt 5338 . . 3 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
154151, 153syl 14 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
15529ffund 5365 . . . . 5 (𝐴 ∈ ℂ → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
156155adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
157 funbrfv 5550 . . . 4 (Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
158156, 138, 157sylc 62 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
159 oveq1 5876 . . . . . 6 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
160159oveq2d 5885 . . . . 5 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
161160negeqd 8142 . . . 4 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
162152, 161, 50, 49fvmptd3 5605 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
163158, 162eqtr4d 2213 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
164144, 154, 163eqfnfvd 5612 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  {crab 2459  Vcvv 2737  wss 3129   class class class wbr 4000  cmpt 4061  dom cdm 4623  ran crn 4624  cres 4625  ccom 4627  Fun wfun 5206   Fn wfn 5207  wf 5208  ontowfo 5210  cfv 5212  (class class class)co 5869  pm cpm 6643  cc 7800  0cc0 7802   · cmul 7807  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  2c2 8959  cexp 10505  abscabs 10990  MetOpencmopn 13152  Topctop 13162  intcnt 13260  cnccncf 13724   lim climc 13790   D cdv 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pm 6645  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator