ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrecap GIF version

Theorem dvrecap 12885
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrecap (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝑤,𝐴

Proof of Theorem dvrecap
Dummy variables 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5169 . . . . . . . . 9 Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
2 funforn 5360 . . . . . . . . 9 (Fun (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ↔ (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
31, 2mpbi 144 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
4 fof 5353 . . . . . . . 8 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))–onto→ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))
53, 4ax-mp 5 . . . . . . 7 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
6 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
7 breq1 3940 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑤 # 0 ↔ 𝑥 # 0))
87elrab 2844 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
98biimpi 119 . . . . . . . . . . . 12 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
109adantl 275 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
1110simpld 111 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 ∈ ℂ)
1210simprd 113 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑥 # 0)
136, 11, 12divclapd 8574 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
1413ralrimiva 2508 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ)
15 eqid 2140 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))
1615rnmptss 5589 . . . . . . . 8 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} (𝐴 / 𝑥) ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
1714, 16syl 14 . . . . . . 7 (𝐴 ∈ ℂ → ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ)
18 fss 5292 . . . . . . 7 (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∧ ran (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
195, 17, 18sylancr 411 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ)
2015dmmpt 5042 . . . . . . 7 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) = {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V}
21 ssrab2 3187 . . . . . . . 8 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
22 ssrab2 3187 . . . . . . . 8 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ
2321, 22sstri 3111 . . . . . . 7 {𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ (𝐴 / 𝑥) ∈ V} ⊆ ℂ
2420, 23eqsstri 3134 . . . . . 6 dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ
25 cnex 7768 . . . . . . 7 ℂ ∈ V
2625, 25elpm2 6582 . . . . . 6 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) ↔ ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))⟶ℂ ∧ dom (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ⊆ ℂ))
2719, 24, 26sylanblrc 413 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ))
28 dvfcnpm 12867 . . . . 5 ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)) ∈ (ℂ ↑pm ℂ) → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
2927, 28syl 14 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ)
30 ssidd 3123 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
31 divclap 8462 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝐴 / 𝑥) ∈ ℂ)
32313expb 1183 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) → (𝐴 / 𝑥) ∈ ℂ)
338, 32sylan2b 285 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑥) ∈ ℂ)
3433fmpttd 5583 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
3522a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
3630, 34, 35dvbss 12862 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
37 elrabi 2841 . . . . . . . 8 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 ∈ ℂ)
3837adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ℂ)
39 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝐴 ∈ ℂ)
4038sqcld 10453 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) ∈ ℂ)
41 breq1 3940 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤 # 0 ↔ 𝑦 # 0))
4241elrab 2844 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
4342simprbi 273 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑦 # 0)
4443adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 # 0)
45 sqap0 10390 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4638, 45syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑦↑2) # 0 ↔ 𝑦 # 0))
4744, 46mpbird 166 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) # 0)
4839, 40, 47divclapd 8574 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) ∈ ℂ)
4948negcld 8084 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
50 simpr 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
51 eqid 2140 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5251cntoptop 12741 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ Top
53 0cn 7782 . . . . . . . . . . 11 0 ∈ ℂ
54 cnopnap 12802 . . . . . . . . . . 11 (0 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − )))
5553, 54ax-mp 5 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))
56 isopn3i 12343 . . . . . . . . . 10 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∈ (MetOpen‘(abs ∘ − ))) → ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
5752, 55, 56mp2an 423 . . . . . . . . 9 ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) = {𝑤 ∈ ℂ ∣ 𝑤 # 0}
5850, 57eleqtrrdi 2234 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}))
5938sqvald 10452 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦↑2) = (𝑦 · 𝑦))
6059oveq2d 5798 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
6139, 38, 38, 44, 44divdivap1d 8606 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
6260, 61eqtr4d 2176 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
6362negeqd 7981 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
6439, 38, 44divclapd 8574 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / 𝑦) ∈ ℂ)
6564, 38, 44divnegapd 8587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
6663, 65eqtrd 2173 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
6764negcld 8084 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / 𝑦) ∈ ℂ)
68 eqid 2140 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧))
6968cdivcncfap 12795 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
7067, 69syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ))
71 oveq2 5790 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
7270, 50, 71cnmptlimc 12851 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
7366, 72eqeltrd 2217 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
74 cncff 12772 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ({𝑤 ∈ ℂ ∣ 𝑤 # 0}–cn→ℂ) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7570, 74syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
7622a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → {𝑤 ∈ ℂ ∣ 𝑤 # 0} ⊆ ℂ)
7775, 76limcdifap 12839 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
78 elrabi 2841 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
7978adantl 275 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
80 breq1 3940 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
8180elrab 2844 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8279, 81sylib 121 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
8382simpld 111 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 ∈ ℂ)
8437ad2antlr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ ℂ)
8583, 84subcld 8097 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) ∈ ℂ)
8664adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑦) ∈ ℂ)
8781simprbi 273 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → 𝑧 # 0)
8879, 87syl 14 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 0)
8986, 83, 88divclapd 8574 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
90 mulneg12 8183 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9185, 89, 90syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
9284, 83, 89subdird 8201 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
9383, 84negsubdi2d 8113 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝑧𝑦) = (𝑦𝑧))
9493oveq1d 5797 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
95 oveq2 5790 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
96 simpll 519 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝐴 ∈ ℂ)
9796, 83, 88divclapd 8574 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝐴 / 𝑧) ∈ ℂ)
9815, 95, 79, 97fvmptd3 5522 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
9943ad2antlr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 # 0)
10096, 84, 99divcanap2d 8576 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
101100oveq1d 5797 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
10284, 86, 83, 88divassapd 8610 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
10398, 101, 1023eqtr2d 2179 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
104 oveq2 5790 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
10550adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
10615, 104, 105, 86fvmptd3 5522 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
10786, 83, 88divcanap2d 8576 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
108106, 107eqtr4d 2176 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
109103, 108oveq12d 5800 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
11092, 94, 1093eqtr4d 2183 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)))
11186, 83, 88divnegapd 8587 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
112111oveq2d 5798 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
11391, 110, 1123eqtr3d 2181 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
114113oveq1d 5797 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
11586negcld 8084 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → -(𝐴 / 𝑦) ∈ ℂ)
116115, 83, 88divclapd 8574 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
117 breq1 3940 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑧 → (𝑘 # 𝑦𝑧 # 𝑦))
118117elrab 2844 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↔ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ 𝑧 # 𝑦))
119118simprbi 273 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} → 𝑧 # 𝑦)
120119adantl 275 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → 𝑧 # 𝑦)
12183, 84, 120subap0d 8430 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (𝑧𝑦) # 0)
122116, 85, 121divcanap3d 8579 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
123114, 122eqtrd 2173 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ 𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) → ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
124123mpteq2dva 4026 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
125 ssrab2 3187 . . . . . . . . . . . . 13 {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0}
126 resmpt 4875 . . . . . . . . . . . . 13 ({𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 0} → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧)))
127125, 126ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ (-(𝐴 / 𝑦) / 𝑧))
128124, 127eqtr4di 2191 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}))
129128oveq1d 5797 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦}) lim 𝑦))
13077, 129eqtr4d 2176 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13173, 130eleqtrd 2219 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
13251cntoptopon 12740 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
133132toponrestid 12227 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
134 eqid 2140 . . . . . . . . 9 (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
135 ssidd 3123 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ℂ ⊆ ℂ)
13634adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
137133, 51, 134, 135, 136, 76eldvap 12859 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘{𝑤 ∈ ℂ ∣ 𝑤 # 0}) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ {𝑘 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∣ 𝑘 # 𝑦} ↦ ((((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
13858, 131, 137mpbir2and 929 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
139 breldmg 4753 . . . . . . 7 ((𝑦 ∈ ℂ ∧ -(𝐴 / (𝑦↑2)) ∈ ℂ ∧ 𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2))) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14038, 49, 138, 139syl3anc 1217 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
14136, 140eqelssd 3121 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = {𝑤 ∈ ℂ ∣ 𝑤 # 0})
142141feq2d 5268 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ))
14329, 142mpbid 146 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))):{𝑤 ∈ ℂ ∣ 𝑤 # 0}⟶ℂ)
144143ffnd 5281 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
14511sqcld 10453 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) ∈ ℂ)
146 sqap0 10390 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14711, 146syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥↑2) # 0 ↔ 𝑥 # 0))
14812, 147mpbird 166 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝑥↑2) # 0)
1496, 145, 148divclapd 8574 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → (𝐴 / (𝑥↑2)) ∈ ℂ)
150149negcld 8084 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → -(𝐴 / (𝑥↑2)) ∈ ℂ)
151150ralrimiva 2508 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ)
152 eqid 2140 . . . 4 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))
153152fnmpt 5257 . . 3 (∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}-(𝐴 / (𝑥↑2)) ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
154151, 153syl 14 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))) Fn {𝑤 ∈ ℂ ∣ 𝑤 # 0})
15529ffund 5284 . . . . 5 (𝐴 ∈ ℂ → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
156155adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))))
157 funbrfv 5468 . . . 4 (Fun (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
158156, 138, 157sylc 62 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
159 oveq1 5789 . . . . . 6 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
160159oveq2d 5798 . . . . 5 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
161160negeqd 7981 . . . 4 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
162152, 161, 50, 49fvmptd3 5522 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
163158, 162eqtr4d 2176 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
164144, 154, 163eqfnfvd 5529 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  {crab 2421  Vcvv 2689  wss 3076   class class class wbr 3937  cmpt 3997  dom cdm 4547  ran crn 4548  cres 4549  ccom 4551  Fun wfun 5125   Fn wfn 5126  wf 5127  ontowfo 5129  cfv 5131  (class class class)co 5782  pm cpm 6551  cc 7642  0cc0 7644   · cmul 7649  cmin 7957  -cneg 7958   # cap 8367   / cdiv 8456  2c2 8795  cexp 10323  abscabs 10801  MetOpencmopn 12193  Topctop 12203  intcnt 12301  cnccncf 12765   lim climc 12831   D cdv 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-pm 6553  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator