| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodmrnu | GIF version | ||
| Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.) |
| Ref | Expression |
|---|---|
| fodmrnu | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 5485 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fofn 5485 | . . 3 ⊢ (𝐹:𝐶–onto→𝐷 → 𝐹 Fn 𝐶) | |
| 3 | fndmu 5362 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → 𝐴 = 𝐶) |
| 5 | forn 5486 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | forn 5486 | . . 3 ⊢ (𝐹:𝐶–onto→𝐷 → ran 𝐹 = 𝐷) | |
| 7 | 5, 6 | sylan9req 2250 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → 𝐵 = 𝐷) |
| 8 | 4, 7 | jca 306 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ran crn 4665 Fn wfn 5254 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-fn 5262 df-f 5263 df-fo 5265 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |