ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodmrnu GIF version

Theorem fodmrnu 5428
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5422 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 5422 . . 3 (𝐹:𝐶onto𝐷𝐹 Fn 𝐶)
3 fndmu 5299 . . 3 ((𝐹 Fn 𝐴𝐹 Fn 𝐶) → 𝐴 = 𝐶)
41, 2, 3syl2an 287 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐴 = 𝐶)
5 forn 5423 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
6 forn 5423 . . 3 (𝐹:𝐶onto𝐷 → ran 𝐹 = 𝐷)
75, 6sylan9req 2224 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐵 = 𝐷)
84, 7jca 304 1 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  ran crn 4612   Fn wfn 5193  ontowfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-fn 5201  df-f 5202  df-fo 5204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator