ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodmrnu GIF version

Theorem fodmrnu 5484
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5478 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 5478 . . 3 (𝐹:𝐶onto𝐷𝐹 Fn 𝐶)
3 fndmu 5355 . . 3 ((𝐹 Fn 𝐴𝐹 Fn 𝐶) → 𝐴 = 𝐶)
41, 2, 3syl2an 289 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐴 = 𝐶)
5 forn 5479 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
6 forn 5479 . . 3 (𝐹:𝐶onto𝐷 → ran 𝐹 = 𝐷)
75, 6sylan9req 2247 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐵 = 𝐷)
84, 7jca 306 1 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  ran crn 4660   Fn wfn 5249  ontowfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-fn 5257  df-f 5258  df-fo 5260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator