Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodmrnu | GIF version |
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.) |
Ref | Expression |
---|---|
fodmrnu | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 5412 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fofn 5412 | . . 3 ⊢ (𝐹:𝐶–onto→𝐷 → 𝐹 Fn 𝐶) | |
3 | fndmu 5289 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐶) → 𝐴 = 𝐶) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → 𝐴 = 𝐶) |
5 | forn 5413 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
6 | forn 5413 | . . 3 ⊢ (𝐹:𝐶–onto→𝐷 → ran 𝐹 = 𝐷) | |
7 | 5, 6 | sylan9req 2220 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → 𝐵 = 𝐷) |
8 | 4, 7 | jca 304 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐹:𝐶–onto→𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ran crn 4605 Fn wfn 5183 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-fn 5191 df-f 5192 df-fo 5194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |