ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodmrnu GIF version

Theorem fodmrnu 5448
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5442 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 5442 . . 3 (𝐹:𝐶onto𝐷𝐹 Fn 𝐶)
3 fndmu 5319 . . 3 ((𝐹 Fn 𝐴𝐹 Fn 𝐶) → 𝐴 = 𝐶)
41, 2, 3syl2an 289 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐴 = 𝐶)
5 forn 5443 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
6 forn 5443 . . 3 (𝐹:𝐶onto𝐷 → ran 𝐹 = 𝐷)
75, 6sylan9req 2231 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐵 = 𝐷)
84, 7jca 306 1 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  ran crn 4629   Fn wfn 5213  ontowfo 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144  df-fn 5221  df-f 5222  df-fo 5224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator