| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fo | GIF version | ||
| Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 5257 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 5254 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4665 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1364 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: foeq1 5479 foeq2 5480 foeq3 5481 nffo 5482 fof 5483 forn 5486 dffo2 5487 dffn4 5489 fores 5493 dff1o2 5512 dff1o3 5513 foimacnv 5525 foun 5526 fconstfvm 5783 dff1o6 5826 fo1st 6224 fo2nd 6225 tposfo2 6334 ctssdc 7188 exmidfodomrlemim 7280 reeff1o 15093 |
| Copyright terms: Public domain | W3C validator |