ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fo GIF version

Definition df-fo 5324
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fo (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))

Detailed syntax breakdown of Definition df-fo
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3wfo 5316 . 2 wff 𝐹:𝐴onto𝐵
53, 1wfn 5313 . . 3 wff 𝐹 Fn 𝐴
63crn 4720 . . . 4 class ran 𝐹
76, 2wceq 1395 . . 3 wff ran 𝐹 = 𝐵
85, 7wa 104 . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
94, 8wb 105 1 wff (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
This definition is referenced by:  foeq1  5546  foeq2  5547  foeq3  5548  nffo  5549  fof  5550  forn  5553  dffo2  5554  dffn4  5556  fores  5560  dff1o2  5579  dff1o3  5580  foimacnv  5592  foun  5593  fconstfvm  5861  dff1o6  5906  fo1st  6309  fo2nd  6310  tposfo2  6419  ctssdc  7288  exmidfodomrlemim  7387  reeff1o  15455
  Copyright terms: Public domain W3C validator