| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fo | GIF version | ||
| Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 5292 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 5289 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4697 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1375 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: foeq1 5520 foeq2 5521 foeq3 5522 nffo 5523 fof 5524 forn 5527 dffo2 5528 dffn4 5530 fores 5534 dff1o2 5553 dff1o3 5554 foimacnv 5566 foun 5567 fconstfvm 5830 dff1o6 5873 fo1st 6273 fo2nd 6274 tposfo2 6383 ctssdc 7248 exmidfodomrlemim 7347 reeff1o 15412 |
| Copyright terms: Public domain | W3C validator |