| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fo | GIF version | ||
| Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 5257 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 5254 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4665 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1364 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: foeq1 5477 foeq2 5478 foeq3 5479 nffo 5480 fof 5481 forn 5484 dffo2 5485 dffn4 5487 fores 5491 dff1o2 5510 dff1o3 5511 foimacnv 5523 foun 5524 fconstfvm 5781 dff1o6 5824 fo1st 6216 fo2nd 6217 tposfo2 6326 ctssdc 7180 exmidfodomrlemim 7270 reeff1o 15019 |
| Copyright terms: Public domain | W3C validator |