![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fo | GIF version |
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 5252 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 5249 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4660 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1364 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: foeq1 5472 foeq2 5473 foeq3 5474 nffo 5475 fof 5476 forn 5479 dffo2 5480 dffn4 5482 fores 5486 dff1o2 5505 dff1o3 5506 foimacnv 5518 foun 5519 fconstfvm 5776 dff1o6 5819 fo1st 6210 fo2nd 6211 tposfo2 6320 ctssdc 7172 exmidfodomrlemim 7261 reeff1o 14908 |
Copyright terms: Public domain | W3C validator |