ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fo GIF version

Definition df-fo 5265
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fo (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))

Detailed syntax breakdown of Definition df-fo
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3wfo 5257 . 2 wff 𝐹:𝐴onto𝐵
53, 1wfn 5254 . . 3 wff 𝐹 Fn 𝐴
63crn 4665 . . . 4 class ran 𝐹
76, 2wceq 1364 . . 3 wff ran 𝐹 = 𝐵
85, 7wa 104 . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
94, 8wb 105 1 wff (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
This definition is referenced by:  foeq1  5477  foeq2  5478  foeq3  5479  nffo  5480  fof  5481  forn  5484  dffo2  5485  dffn4  5487  fores  5491  dff1o2  5510  dff1o3  5511  foimacnv  5523  foun  5524  fconstfvm  5781  dff1o6  5824  fo1st  6216  fo2nd  6217  tposfo2  6326  ctssdc  7180  exmidfodomrlemim  7270  reeff1o  15019
  Copyright terms: Public domain W3C validator