| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fo | GIF version | ||
| Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 5316 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 5313 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4720 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1395 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: foeq1 5546 foeq2 5547 foeq3 5548 nffo 5549 fof 5550 forn 5553 dffo2 5554 dffn4 5556 fores 5560 dff1o2 5579 dff1o3 5580 foimacnv 5592 foun 5593 fconstfvm 5861 dff1o6 5906 fo1st 6309 fo2nd 6310 tposfo2 6419 ctssdc 7288 exmidfodomrlemim 7387 reeff1o 15455 |
| Copyright terms: Public domain | W3C validator |