Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fo | GIF version |
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 5185 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 5182 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4604 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1343 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 103 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 104 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: foeq1 5405 foeq2 5406 foeq3 5407 nffo 5408 fof 5409 forn 5412 dffo2 5413 dffn4 5415 fores 5418 dff1o2 5436 dff1o3 5437 foimacnv 5449 foun 5450 fconstfvm 5702 dff1o6 5743 fo1st 6122 fo2nd 6123 tposfo2 6231 ctssdc 7074 exmidfodomrlemim 7153 reeff1o 13294 |
Copyright terms: Public domain | W3C validator |