ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fo GIF version

Definition df-fo 5300
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fo (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))

Detailed syntax breakdown of Definition df-fo
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3wfo 5292 . 2 wff 𝐹:𝐴onto𝐵
53, 1wfn 5289 . . 3 wff 𝐹 Fn 𝐴
63crn 4697 . . . 4 class ran 𝐹
76, 2wceq 1375 . . 3 wff ran 𝐹 = 𝐵
85, 7wa 104 . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
94, 8wb 105 1 wff (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
This definition is referenced by:  foeq1  5520  foeq2  5521  foeq3  5522  nffo  5523  fof  5524  forn  5527  dffo2  5528  dffn4  5530  fores  5534  dff1o2  5553  dff1o3  5554  foimacnv  5566  foun  5567  fconstfvm  5830  dff1o6  5873  fo1st  6273  fo2nd  6274  tposfo2  6383  ctssdc  7248  exmidfodomrlemim  7347  reeff1o  15412
  Copyright terms: Public domain W3C validator