| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fo | GIF version | ||
| Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 5274 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 5271 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4680 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1373 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: foeq1 5501 foeq2 5502 foeq3 5503 nffo 5504 fof 5505 forn 5508 dffo2 5509 dffn4 5511 fores 5515 dff1o2 5534 dff1o3 5535 foimacnv 5547 foun 5548 fconstfvm 5809 dff1o6 5852 fo1st 6250 fo2nd 6251 tposfo2 6360 ctssdc 7222 exmidfodomrlemim 7316 reeff1o 15289 |
| Copyright terms: Public domain | W3C validator |