| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hb3and | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hb3an 1564. (Contributed by NM, 17-Feb-2013.) |
| Ref | Expression |
|---|---|
| hb3and.1 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| hb3and.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| hb3and.3 | ⊢ (𝜑 → (𝜃 → ∀𝑥𝜃)) |
| Ref | Expression |
|---|---|
| hb3and | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜓 ∧ 𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hb3and.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 2 | hb3and.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | hb3and.3 | . . 3 ⊢ (𝜑 → (𝜃 → ∀𝑥𝜃)) | |
| 4 | 1, 2, 3 | 3anim123d 1330 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → (∀𝑥𝜓 ∧ ∀𝑥𝜒 ∧ ∀𝑥𝜃))) |
| 5 | 19.26-3an 1497 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒 ∧ ∀𝑥𝜃)) | |
| 6 | 4, 5 | imbitrrdi 162 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜓 ∧ 𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |