| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hband | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hban 1561. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| hband.1 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| hband.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| Ref | Expression |
|---|---|
| hband | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hband.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 2 | hband.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | 1, 2 | anim12d 335 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜒))) |
| 4 | 19.26 1495 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | |
| 5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |