| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1330 hband 1503 hbbid 1589 spsbim 1857 moim 2109 moimv 2111 2euswapdc 2136 rspcimedv 2870 soss 4349 trin2 5061 xp11m 5108 funss 5277 fun 5430 dff13 5815 f1eqcocnv 5838 isores3 5862 isosolem 5871 f1o2ndf1 6286 tposfn2 6324 tposf1o2 6328 nndifsnid 6565 nnaordex 6586 supmoti 7059 isotilem 7072 recexprlemss1l 7702 recexprlemss1u 7703 caucvgsrlemoffres 7867 suplocsrlem 7875 nnindnn 7960 eqord1 8510 lemul12b 8888 lt2msq 8913 lbreu 8972 cju 8988 nnind 9006 uz11 9624 xrre2 9896 ico0 10351 ioc0 10352 expcan 10808 gcdaddm 12151 bezoutlemaz 12170 bezoutlembz 12171 isprm3 12286 prmdiveq 12404 mulgpropdg 13294 imasabl 13466 subrgdvds 13791 epttop 14326 cnptopresti 14474 cnptoprest 14475 txcnp 14507 addcncntoplem 14797 mulcncflem 14843 bj-stand 15394 exmidsbthrlem 15666 |
| Copyright terms: Public domain | W3C validator |