| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1330 hband 1503 hbbid 1589 spsbim 1857 moim 2109 moimv 2111 2euswapdc 2136 rspcimedv 2870 soss 4350 trin2 5062 xp11m 5109 funss 5278 fun 5431 dff13 5816 f1eqcocnv 5839 isores3 5863 isosolem 5872 f1o2ndf1 6288 tposfn2 6326 tposf1o2 6330 nndifsnid 6567 nnaordex 6588 supmoti 7061 isotilem 7074 recexprlemss1l 7705 recexprlemss1u 7706 caucvgsrlemoffres 7870 suplocsrlem 7878 nnindnn 7963 eqord1 8513 lemul12b 8891 lt2msq 8916 lbreu 8975 cju 8991 nnind 9009 uz11 9627 xrre2 9899 ico0 10354 ioc0 10355 expcan 10811 gcdaddm 12162 bezoutlemaz 12181 bezoutlembz 12182 isprm3 12297 prmdiveq 12415 mulgpropdg 13320 imasabl 13492 subrgdvds 13817 epttop 14352 cnptopresti 14500 cnptoprest 14501 txcnp 14533 addcncntoplem 14823 mulcncflem 14869 bj-stand 15420 exmidsbthrlem 15695 |
| Copyright terms: Public domain | W3C validator |