![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1319 hband 1489 hbbid 1575 spsbim 1843 moim 2090 moimv 2092 2euswapdc 2117 rspcimedv 2845 soss 4316 trin2 5022 xp11m 5069 funss 5237 fun 5390 dff13 5771 f1eqcocnv 5794 isores3 5818 isosolem 5827 f1o2ndf1 6231 tposfn2 6269 tposf1o2 6273 nndifsnid 6510 nnaordex 6531 supmoti 6994 isotilem 7007 recexprlemss1l 7636 recexprlemss1u 7637 caucvgsrlemoffres 7801 suplocsrlem 7809 nnindnn 7894 eqord1 8442 lemul12b 8820 lt2msq 8845 lbreu 8904 cju 8920 nnind 8937 uz11 9552 xrre2 9823 ico0 10264 ioc0 10265 expcan 10698 gcdaddm 11987 bezoutlemaz 12006 bezoutlembz 12007 isprm3 12120 prmdiveq 12238 mulgpropdg 13030 subrgdvds 13361 epttop 13629 cnptopresti 13777 cnptoprest 13778 txcnp 13810 addcncntoplem 14090 mulcncflem 14129 bj-stand 14539 exmidsbthrlem 14809 |
Copyright terms: Public domain | W3C validator |