ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12d GIF version

Theorem anim12d 333
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.)
Hypotheses
Ref Expression
anim12d.1 (𝜑 → (𝜓𝜒))
anim12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
anim12d (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))

Proof of Theorem anim12d
StepHypRef Expression
1 anim12d.1 . 2 (𝜑 → (𝜓𝜒))
2 anim12d.2 . 2 (𝜑 → (𝜃𝜏))
3 idd 21 . 2 (𝜑 → ((𝜒𝜏) → (𝜒𝜏)))
41, 2, 3syl2and 293 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anim1d  334  anim2d  335  anim12  342  im2anan9  588  anim12dan  590  3anim123d  1309  hband  1477  hbbid  1563  spsbim  1831  moim  2078  moimv  2080  2euswapdc  2105  rspcimedv  2832  soss  4292  trin2  4995  xp11m  5042  funss  5207  fun  5360  dff13  5736  f1eqcocnv  5759  isores3  5783  isosolem  5792  f1o2ndf1  6196  tposfn2  6234  tposf1o2  6238  nndifsnid  6475  nnaordex  6495  supmoti  6958  isotilem  6971  recexprlemss1l  7576  recexprlemss1u  7577  caucvgsrlemoffres  7741  suplocsrlem  7749  nnindnn  7834  eqord1  8381  lemul12b  8756  lt2msq  8781  lbreu  8840  cju  8856  nnind  8873  uz11  9488  xrre2  9757  ico0  10197  ioc0  10198  expcan  10629  gcdaddm  11917  bezoutlemaz  11936  bezoutlembz  11937  isprm3  12050  prmdiveq  12168  epttop  12730  cnptopresti  12878  cnptoprest  12879  txcnp  12911  addcncntoplem  13191  mulcncflem  13230  bj-stand  13629  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator