Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim12d | GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
4 | 1, 2, 3 | syl2and 293 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anim1d 334 anim2d 335 anim12 342 im2anan9 588 anim12dan 590 3anim123d 1309 hband 1477 hbbid 1563 spsbim 1831 moim 2078 moimv 2080 2euswapdc 2105 rspcimedv 2832 soss 4292 trin2 4995 xp11m 5042 funss 5207 fun 5360 dff13 5736 f1eqcocnv 5759 isores3 5783 isosolem 5792 f1o2ndf1 6196 tposfn2 6234 tposf1o2 6238 nndifsnid 6475 nnaordex 6495 supmoti 6958 isotilem 6971 recexprlemss1l 7576 recexprlemss1u 7577 caucvgsrlemoffres 7741 suplocsrlem 7749 nnindnn 7834 eqord1 8381 lemul12b 8756 lt2msq 8781 lbreu 8840 cju 8856 nnind 8873 uz11 9488 xrre2 9757 ico0 10197 ioc0 10198 expcan 10629 gcdaddm 11917 bezoutlemaz 11936 bezoutlembz 11937 isprm3 12050 prmdiveq 12168 epttop 12730 cnptopresti 12878 cnptoprest 12879 txcnp 12911 addcncntoplem 13191 mulcncflem 13230 bj-stand 13629 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |