| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1332 hband 1513 hbbid 1599 spsbim 1867 moim 2119 moimv 2121 2euswapdc 2146 rspcimedv 2880 soss 4365 trin2 5079 xp11m 5126 funss 5295 fun 5454 dff13 5844 f1eqcocnv 5867 isores3 5891 isosolem 5900 f1o2ndf1 6321 tposfn2 6359 tposf1o2 6363 nndifsnid 6600 nnaordex 6621 supmoti 7102 isotilem 7115 recexprlemss1l 7755 recexprlemss1u 7756 caucvgsrlemoffres 7920 suplocsrlem 7928 nnindnn 8013 eqord1 8563 lemul12b 8941 lt2msq 8966 lbreu 9025 cju 9041 nnind 9059 uz11 9678 xrre2 9950 ico0 10411 ioc0 10412 expcan 10868 gcdaddm 12349 bezoutlemaz 12368 bezoutlembz 12369 isprm3 12484 prmdiveq 12602 mulgpropdg 13544 imasabl 13716 subrgdvds 14041 epttop 14606 cnptopresti 14754 cnptoprest 14755 txcnp 14787 addcncntoplem 15077 mulcncflem 15123 bj-stand 15758 exmidsbthrlem 16035 |
| Copyright terms: Public domain | W3C validator |