| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 600 anim12dan 602 3anim123d 1334 hband 1515 hbbid 1601 spsbim 1869 moim 2122 moimv 2124 2euswapdc 2149 rspcimedv 2889 soss 4382 trin2 5096 xp11m 5143 funss 5313 fun 5473 dff13 5865 f1eqcocnv 5888 isores3 5912 isosolem 5921 f1o2ndf1 6344 tposfn2 6382 tposf1o2 6386 nndifsnid 6623 nnaordex 6644 supmoti 7128 isotilem 7141 recexprlemss1l 7790 recexprlemss1u 7791 caucvgsrlemoffres 7955 suplocsrlem 7963 nnindnn 8048 eqord1 8598 lemul12b 8976 lt2msq 9001 lbreu 9060 cju 9076 nnind 9094 uz11 9713 xrre2 9985 ico0 10448 ioc0 10449 expcan 10905 swrdccatin2 11227 gcdaddm 12471 bezoutlemaz 12490 bezoutlembz 12491 isprm3 12606 prmdiveq 12724 mulgpropdg 13667 imasabl 13839 subrgdvds 14164 epttop 14729 cnptopresti 14877 cnptoprest 14878 txcnp 14910 addcncntoplem 15200 mulcncflem 15246 umgrvad2edg 15974 bj-stand 16022 exmidsbthrlem 16301 |
| Copyright terms: Public domain | W3C validator |