| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1330 hband 1503 hbbid 1589 spsbim 1857 moim 2109 moimv 2111 2euswapdc 2136 rspcimedv 2870 soss 4350 trin2 5062 xp11m 5109 funss 5278 fun 5433 dff13 5818 f1eqcocnv 5841 isores3 5865 isosolem 5874 f1o2ndf1 6295 tposfn2 6333 tposf1o2 6337 nndifsnid 6574 nnaordex 6595 supmoti 7068 isotilem 7081 recexprlemss1l 7721 recexprlemss1u 7722 caucvgsrlemoffres 7886 suplocsrlem 7894 nnindnn 7979 eqord1 8529 lemul12b 8907 lt2msq 8932 lbreu 8991 cju 9007 nnind 9025 uz11 9643 xrre2 9915 ico0 10370 ioc0 10371 expcan 10827 gcdaddm 12178 bezoutlemaz 12197 bezoutlembz 12198 isprm3 12313 prmdiveq 12431 mulgpropdg 13372 imasabl 13544 subrgdvds 13869 epttop 14412 cnptopresti 14560 cnptoprest 14561 txcnp 14593 addcncntoplem 14883 mulcncflem 14929 bj-stand 15480 exmidsbthrlem 15757 |
| Copyright terms: Public domain | W3C validator |