| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 600 anim12dan 602 3anim123d 1353 hband 1535 hbbid 1621 spsbim 1889 moim 2142 moimv 2144 2euswapdc 2169 rspcimedv 2909 soss 4405 trin2 5120 xp11m 5167 funss 5337 fun 5499 dff13 5898 f1eqcocnv 5921 isores3 5945 isosolem 5954 f1o2ndf1 6380 tposfn2 6418 tposf1o2 6422 nndifsnid 6661 nnaordex 6682 supmoti 7168 isotilem 7181 recexprlemss1l 7830 recexprlemss1u 7831 caucvgsrlemoffres 7995 suplocsrlem 8003 nnindnn 8088 eqord1 8638 lemul12b 9016 lt2msq 9041 lbreu 9100 cju 9116 nnind 9134 uz11 9753 xrre2 10025 ico0 10489 ioc0 10490 expcan 10946 swrdccatin2 11269 gcdaddm 12513 bezoutlemaz 12532 bezoutlembz 12533 isprm3 12648 prmdiveq 12766 mulgpropdg 13709 imasabl 13881 subrgdvds 14207 epttop 14772 cnptopresti 14920 cnptoprest 14921 txcnp 14953 addcncntoplem 15243 mulcncflem 15289 umgrvad2edg 16017 wlk1walkdom 16080 bj-stand 16136 exmidsbthrlem 16420 |
| Copyright terms: Public domain | W3C validator |