Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2albiim | GIF version |
Description: Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2albiim | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1485 | . . 3 ⊢ (∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) | |
2 | 1 | albii 1468 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) |
3 | 19.26 1479 | . 2 ⊢ (∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sbnf2 1979 eqopab2b 4273 eqrel 4709 eqrelrel 4721 eqoprab2b 5923 |
Copyright terms: Public domain | W3C validator |