Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.2 | GIF version |
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.) |
Ref | Expression |
---|---|
19.2 | ⊢ (∀𝑥𝜑 → ∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1578 | . 2 ⊢ (𝜑 → ∃𝑦𝜑) | |
2 | 1 | sps 1525 | 1 ⊢ (∀𝑥𝜑 → ∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: i19.24 1627 i19.39 1628 19.34 1672 eusv2i 4433 |
Copyright terms: Public domain | W3C validator |