| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.2 | GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.) |
| Ref | Expression |
|---|---|
| 19.2 | ⊢ (∀𝑥𝜑 → ∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1604 | . 2 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 2 | 1 | sps 1551 | 1 ⊢ (∀𝑥𝜑 → ∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: i19.24 1653 i19.39 1654 19.34 1698 eusv2i 4491 |
| Copyright terms: Public domain | W3C validator |