ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.2 GIF version

Theorem 19.2 1575
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
Assertion
Ref Expression
19.2 (∀𝑥𝜑 → ∃𝑦𝜑)

Proof of Theorem 19.2
StepHypRef Expression
1 19.8a 1528 . 2 (𝜑 → ∃𝑦𝜑)
21sps 1476 1 (∀𝑥𝜑 → ∃𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1288  wex 1427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-4 1446
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  i19.24  1576  i19.39  1577  19.34  1620  eusv2i  4292
  Copyright terms: Public domain W3C validator