Proof of Theorem upgriswlkdc
| Step | Hyp | Ref
| Expression |
| 1 | | upgriswlk.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | upgriswlk.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | 1, 2 | iswlkg 16041 |
. 2
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 4 | | ifpdc 985 |
. . . . . . . . 9
⊢
(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 5 | 4 | adantl 277 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 6 | | df-ifp 984 |
. . . . . . . . . 10
⊢
(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) ∨ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 7 | | dfsn2 3680 |
. . . . . . . . . . . . . . . 16
⊢ {(𝑃‘𝑘)} = {(𝑃‘𝑘), (𝑃‘𝑘)} |
| 8 | | preq2 3744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃‘𝑘), (𝑃‘𝑘)} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 9 | 7, 8 | eqtrid 2274 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃‘𝑘)} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 10 | 9 | eqeq2d 2241 |
. . . . . . . . . . . . . 14
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 11 | 10 | biimpa 296 |
. . . . . . . . . . . . 13
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 12 | 11 | a1d 22 |
. . . . . . . . . . . 12
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 13 | | eqid 2229 |
. . . . . . . . . . . . . . . . 17
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 14 | 2, 13 | upgredginwlk 16067 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺))) |
| 15 | 14 | adantrr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺))) |
| 16 | 15 | imp 124 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) |
| 17 | | simp-4l 541 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → 𝐺 ∈ UPGraph) |
| 18 | | simplr 528 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) |
| 19 | | simprr 531 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
| 20 | | simprr 531 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 21 | 20 | ad5ant12 518 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 22 | | elfzofz 10359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(0..^(♯‘𝐹))
→ 𝑘 ∈
(0...(♯‘𝐹))) |
| 23 | 22 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → 𝑘 ∈ (0...(♯‘𝐹))) |
| 24 | 21, 23 | ffvelcdmd 5771 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝑃‘𝑘) ∈ 𝑉) |
| 25 | 24 | elexd 2813 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝑃‘𝑘) ∈ V) |
| 26 | | fzofzp1 10433 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(0..^(♯‘𝐹))
→ (𝑘 + 1) ∈
(0...(♯‘𝐹))) |
| 27 | 26 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝑘 + 1) ∈ (0...(♯‘𝐹))) |
| 28 | 21, 27 | ffvelcdmd 5771 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝑃‘(𝑘 + 1)) ∈ 𝑉) |
| 29 | 28 | elexd 2813 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝑃‘(𝑘 + 1)) ∈ V) |
| 30 | | neqne 2408 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| 31 | 30 | ad2antrl 490 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| 32 | 1, 13 | upgredgpr 15947 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ UPGraph ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ ((𝑃‘𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹‘𝑘))) |
| 33 | 17, 18, 19, 25, 29, 31, 32 | syl33anc 1286 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹‘𝑘))) |
| 34 | 33 | eqcomd 2235 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 35 | 34 | exp31 364 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 36 | 16, 35 | mpd 13 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 37 | 36 | com12 30 |
. . . . . . . . . . . 12
⊢ ((¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 38 | 12, 37 | jaoi 721 |
. . . . . . . . . . 11
⊢ ((((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) ∨ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 39 | 38 | com12 30 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) ∨ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 40 | 6, 39 | biimtrid 152 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 41 | 40 | imp 124 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 42 | 5, 41 | jca 306 |
. . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 43 | 42 | ex 115 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 44 | | ifpprsnssdc 3774 |
. . . . . . 7
⊢ (((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∧ DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 45 | 44 | ancoms 268 |
. . . . . 6
⊢
((DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 46 | 43, 45 | impbid1 142 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ (DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 47 | 46 | ralbidva 2526 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 48 | 47 | pm5.32da 452 |
. . 3
⊢ (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
| 49 | | df-3an 1004 |
. . 3
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 50 | | df-3an 1004 |
. . 3
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 51 | 48, 49, 50 | 3bitr4g 223 |
. 2
⊢ (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
| 52 | 3, 51 | bitrd 188 |
1
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |