Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imanst | GIF version |
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
imanst | ⊢ (STAB 𝜓 → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 624 | . . . 4 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | df-stab 826 | . . . . 5 ⊢ (STAB 𝜓 ↔ (¬ ¬ 𝜓 → 𝜓)) | |
3 | 2 | biimpi 119 | . . . 4 ⊢ (STAB 𝜓 → (¬ ¬ 𝜓 → 𝜓)) |
4 | 1, 3 | impbid2 142 | . . 3 ⊢ (STAB 𝜓 → (𝜓 ↔ ¬ ¬ 𝜓)) |
5 | 4 | imbi2d 229 | . 2 ⊢ (STAB 𝜓 → ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓))) |
6 | imnan 685 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
7 | 5, 6 | bitrdi 195 | 1 ⊢ (STAB 𝜓 → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 STAB wstab 825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-stab 826 |
This theorem is referenced by: imandc 884 dfss4st 3360 |
Copyright terms: Public domain | W3C validator |