| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imanst | GIF version | ||
| Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| imanst | ⊢ (STAB 𝜓 → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notnot 630 | . . . 4 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | df-stab 832 | . . . . 5 ⊢ (STAB 𝜓 ↔ (¬ ¬ 𝜓 → 𝜓)) | |
| 3 | 2 | biimpi 120 | . . . 4 ⊢ (STAB 𝜓 → (¬ ¬ 𝜓 → 𝜓)) | 
| 4 | 1, 3 | impbid2 143 | . . 3 ⊢ (STAB 𝜓 → (𝜓 ↔ ¬ ¬ 𝜓)) | 
| 5 | 4 | imbi2d 230 | . 2 ⊢ (STAB 𝜓 → ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓))) | 
| 6 | imnan 691 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 7 | 5, 6 | bitrdi 196 | 1 ⊢ (STAB 𝜓 → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 STAB wstab 831 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 | 
| This theorem is referenced by: imandc 890 dfss4st 3396 | 
| Copyright terms: Public domain | W3C validator |