ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2ani GIF version

Theorem mp2ani 429
Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mp2ani.1 𝜓
mp2ani.2 𝜒
mp2ani.3 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mp2ani (𝜑𝜃)

Proof of Theorem mp2ani
StepHypRef Expression
1 mp2ani.2 . 2 𝜒
2 mp2ani.1 . . 3 𝜓
3 mp2ani.3 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpani 427 . 2 (𝜑 → (𝜒𝜃))
51, 4mpi 15 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  th3q  6606  addnnnq0  7390  mulnnnq0  7391  addsrpr  7686  mulsrpr  7687  addccncf  13226
  Copyright terms: Public domain W3C validator