| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2ani | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2ani.1 | ⊢ 𝜓 |
| mp2ani.2 | ⊢ 𝜒 |
| mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mp2ani | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
| 2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
| 3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpani 430 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | 1, 4 | mpi 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: th3q 6699 addnnnq0 7516 mulnnnq0 7517 addsrpr 7812 mulsrpr 7813 addccncf 14836 |
| Copyright terms: Public domain | W3C validator |