ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnnnq0 GIF version

Theorem addnnnq0 7604
Description: Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
addnnnq0 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )

Proof of Theorem addnnnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4728 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
2 enq0ex 7594 . . . . 5 ~Q0 ∈ V
32ecelqsi 6706 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ω × N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
41, 3syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
5 opelxpi 4728 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
62ecelqsi 6706 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (ω × N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
75, 6syl 14 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
84, 7anim12i 338 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
9 eqid 2209 . . . 4 [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0
10 eqid 2209 . . . 4 [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0
119, 10pm3.2i 272 . . 3 ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
12 eqid 2209 . . 3 [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0
13 opeq12 3838 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 6686 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 )
1514eqeq2d 2221 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ))
1615anbi1d 465 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
17 simpl 109 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 5989 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 ·o 𝐷) = (𝐴 ·o 𝐷))
19 simpr 110 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 5989 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·o 𝐶) = (𝐵 ·o 𝐶))
2118, 20oveq12d 5992 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)) = ((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)))
2219oveq1d 5989 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·o 𝐷) = (𝐵 ·o 𝐷))
2321, 22opeq12d 3844 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩ = ⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩)
2423eceq1d 6686 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
2524eqeq2d 2221 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ↔ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ))
2616, 25anbi12d 473 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )))
2726spc2egv 2873 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 )))
28 opeq12 3838 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2928eceq1d 6686 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
3029eqeq2d 2221 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ))
3130anbi2d 464 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
32 simpr 110 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 5990 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 ·o 𝑡) = (𝑤 ·o 𝐷))
34 simpl 109 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3534oveq2d 5990 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·o 𝑢) = (𝑣 ·o 𝐶))
3633, 35oveq12d 5992 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)) = ((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)))
3732oveq2d 5990 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·o 𝑡) = (𝑣 ·o 𝐷))
3836, 37opeq12d 3844 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩ = ⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩)
3938eceq1d 6686 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 )
4039eqeq2d 2221 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ))
4131, 40anbi12d 473 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 )))
4241spc2egv 2873 . . . . 5 ((𝐶 ∈ ω ∧ 𝐷N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
43422eximdv 1908 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
4427, 43sylan9 409 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
4511, 12, 44mp2ani 432 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
46 ecexg 6654 . . . 4 ( ~Q0 ∈ V → [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V)
472, 46ax-mp 5 . . 3 [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V
48 simp1 1002 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~Q0 )
4948eqeq1d 2218 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ))
50 simp2 1003 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 )
5150eqeq1d 2218 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ))
5249, 51anbi12d 473 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 )))
53 simp3 1004 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → 𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
5453eqeq1d 2218 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
5552, 54anbi12d 473 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
56554exbidv 1896 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
57 addnq0mo 7602 . . . 4 ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
58 dfplq0qs 7585 . . . 4 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))}
5956, 57, 58ovig 6097 . . 3 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ))
6047, 59mp3an3 1341 . 2 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ))
618, 45, 60sylc 62 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wex 1518  wcel 2180  Vcvv 2779  cop 3649  ωcom 4659   × cxp 4694  (class class class)co 5974   +o coa 6529   ·o comu 6530  [cec 6648   / cqs 6649  Ncnpi 7427   ~Q0 ceq0 7441   +Q0 cplq0 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-enq0 7579  df-nq0 7580  df-plq0 7582
This theorem is referenced by:  addclnq0  7606  nqpnq0nq  7608  nqnq0a  7609  nq0a0  7612  nnanq0  7613  distrnq0  7614  addassnq0  7617
  Copyright terms: Public domain W3C validator