ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnnnq0 GIF version

Theorem addnnnq0 7390
Description: Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
addnnnq0 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )

Proof of Theorem addnnnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4636 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
2 enq0ex 7380 . . . . 5 ~Q0 ∈ V
32ecelqsi 6555 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ω × N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
41, 3syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
5 opelxpi 4636 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
62ecelqsi 6555 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (ω × N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
75, 6syl 14 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
84, 7anim12i 336 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
9 eqid 2165 . . . 4 [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0
10 eqid 2165 . . . 4 [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0
119, 10pm3.2i 270 . . 3 ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
12 eqid 2165 . . 3 [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0
13 opeq12 3760 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 6537 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 )
1514eqeq2d 2177 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ))
1615anbi1d 461 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
17 simpl 108 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 5857 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 ·o 𝐷) = (𝐴 ·o 𝐷))
19 simpr 109 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 5857 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·o 𝐶) = (𝐵 ·o 𝐶))
2118, 20oveq12d 5860 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)) = ((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)))
2219oveq1d 5857 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·o 𝐷) = (𝐵 ·o 𝐷))
2321, 22opeq12d 3766 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩ = ⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩)
2423eceq1d 6537 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
2524eqeq2d 2177 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ↔ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ))
2616, 25anbi12d 465 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )))
2726spc2egv 2816 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 )))
28 opeq12 3760 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2928eceq1d 6537 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
3029eqeq2d 2177 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ))
3130anbi2d 460 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
32 simpr 109 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 5858 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 ·o 𝑡) = (𝑤 ·o 𝐷))
34 simpl 108 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3534oveq2d 5858 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·o 𝑢) = (𝑣 ·o 𝐶))
3633, 35oveq12d 5860 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)) = ((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)))
3732oveq2d 5858 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·o 𝑡) = (𝑣 ·o 𝐷))
3836, 37opeq12d 3766 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩ = ⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩)
3938eceq1d 6537 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 )
4039eqeq2d 2177 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ))
4131, 40anbi12d 465 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 )))
4241spc2egv 2816 . . . . 5 ((𝐶 ∈ ω ∧ 𝐷N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
43422eximdv 1870 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝐷) +o (𝑣 ·o 𝐶)), (𝑣 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
4427, 43sylan9 407 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
4511, 12, 44mp2ani 429 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
46 ecexg 6505 . . . 4 ( ~Q0 ∈ V → [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V)
472, 46ax-mp 5 . . 3 [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V
48 simp1 987 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~Q0 )
4948eqeq1d 2174 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ))
50 simp2 988 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 )
5150eqeq1d 2174 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ))
5249, 51anbi12d 465 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 )))
53 simp3 989 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → 𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
5453eqeq1d 2174 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
5552, 54anbi12d 465 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
56554exbidv 1858 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
57 addnq0mo 7388 . . . 4 ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
58 dfplq0qs 7371 . . . 4 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))}
5956, 57, 58ovig 5963 . . 3 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ))
6047, 59mp3an3 1316 . 2 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 ))
618, 45, 60sylc 62 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cop 3579  ωcom 4567   × cxp 4602  (class class class)co 5842   +o coa 6381   ·o comu 6382  [cec 6499   / cqs 6500  Ncnpi 7213   ~Q0 ceq0 7227   +Q0 cplq0 7230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq0 7365  df-nq0 7366  df-plq0 7368
This theorem is referenced by:  addclnq0  7392  nqpnq0nq  7394  nqnq0a  7395  nq0a0  7398  nnanq0  7399  distrnq0  7400  addassnq0  7403
  Copyright terms: Public domain W3C validator