Step | Hyp | Ref
| Expression |
1 | | opelxpi 4660 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆)) |
2 | | th3q.1 |
. . . . 5
⊢ ∼ ∈
V |
3 | 2 | ecelqsi 6591 |
. . . 4
⊢
(⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) → [⟨𝐴, 𝐵⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ )) |
4 | 1, 3 | syl 14 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → [⟨𝐴, 𝐵⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ )) |
5 | | opelxpi 4660 |
. . . 4
⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → ⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆)) |
6 | 2 | ecelqsi 6591 |
. . . 4
⊢
(⟨𝐶, 𝐷⟩ ∈ (𝑆 × 𝑆) → [⟨𝐶, 𝐷⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ )) |
7 | 5, 6 | syl 14 |
. . 3
⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → [⟨𝐶, 𝐷⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ )) |
8 | 4, 7 | anim12i 338 |
. 2
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([⟨𝐴, 𝐵⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ ) ∧
[⟨𝐶, 𝐷⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼
))) |
9 | | eqid 2177 |
. . . 4
⊢
[⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ |
10 | | eqid 2177 |
. . . 4
⊢
[⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ |
11 | 9, 10 | pm3.2i 272 |
. . 3
⊢
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) |
12 | | eqid 2177 |
. . 3
⊢
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ |
13 | | opeq12 3782 |
. . . . . 6
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩) |
14 | | eceq1 6572 |
. . . . . . . . 9
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → [⟨𝑤, 𝑣⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ) |
15 | 14 | eqeq2d 2189 |
. . . . . . . 8
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ↔ [⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ )) |
16 | 15 | anbi1d 465 |
. . . . . . 7
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → (([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ↔
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼
))) |
17 | | oveq1 5884 |
. . . . . . . . 9
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → (⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)) |
18 | 17 | eceq1d 6573 |
. . . . . . . 8
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) |
19 | 18 | eqeq2d 2189 |
. . . . . . 7
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ([(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ ↔
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ )) |
20 | 16, 19 | anbi12d 473 |
. . . . . 6
⊢
(⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) ↔
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼
))) |
21 | 13, 20 | syl 14 |
. . . . 5
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) ↔
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼
))) |
22 | 21 | spc2egv 2829 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) →
∃𝑤∃𝑣(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼
))) |
23 | | opeq12 3782 |
. . . . . . 7
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩) |
24 | | eceq1 6572 |
. . . . . . . . . 10
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → [⟨𝑢, 𝑡⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) |
25 | 24 | eqeq2d 2189 |
. . . . . . . . 9
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ([⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ↔ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ )) |
26 | 25 | anbi2d 464 |
. . . . . . . 8
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → (([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ↔
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼
))) |
27 | | oveq2 5885 |
. . . . . . . . . 10
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → (⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩) = (⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)) |
28 | 27 | eceq1d 6573 |
. . . . . . . . 9
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) |
29 | 28 | eqeq2d 2189 |
. . . . . . . 8
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ([(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ↔
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ )) |
30 | 26, 29 | anbi12d 473 |
. . . . . . 7
⊢
(⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) ↔
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼
))) |
31 | 23, 30 | syl 14 |
. . . . . 6
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) ↔
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼
))) |
32 | 31 | spc2egv 2829 |
. . . . 5
⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) →
∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
33 | 32 | 2eximdv 1882 |
. . . 4
⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → (∃𝑤∃𝑣(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) →
∃𝑤∃𝑣∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
34 | 22, 33 | sylan9 409 |
. . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) →
∃𝑤∃𝑣∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
35 | 11, 12, 34 | mp2ani 432 |
. 2
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ∃𝑤∃𝑣∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
36 | | ecexg 6541 |
. . . 4
⊢ ( ∼ ∈
V → [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ∈
V) |
37 | 2, 36 | ax-mp 5 |
. . 3
⊢
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ∈
V |
38 | | eqeq1 2184 |
. . . . . . . 8
⊢ (𝑥 = [⟨𝐴, 𝐵⟩] ∼ → (𝑥 = [⟨𝑤, 𝑣⟩] ∼ ↔ [⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ )) |
39 | | eqeq1 2184 |
. . . . . . . 8
⊢ (𝑦 = [⟨𝐶, 𝐷⟩] ∼ → (𝑦 = [⟨𝑢, 𝑡⟩] ∼ ↔ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ )) |
40 | 38, 39 | bi2anan9 606 |
. . . . . . 7
⊢ ((𝑥 = [⟨𝐴, 𝐵⟩] ∼ ∧ 𝑦 = [⟨𝐶, 𝐷⟩] ∼ ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ↔
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼
))) |
41 | | eqeq1 2184 |
. . . . . . 7
⊢ (𝑧 = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ → (𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ↔
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
42 | 40, 41 | bi2anan9 606 |
. . . . . 6
⊢ (((𝑥 = [⟨𝐴, 𝐵⟩] ∼ ∧ 𝑦 = [⟨𝐶, 𝐷⟩] ∼ ) ∧ 𝑧 = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) ↔
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
43 | 42 | 3impa 1194 |
. . . . 5
⊢ ((𝑥 = [⟨𝐴, 𝐵⟩] ∼ ∧ 𝑦 = [⟨𝐶, 𝐷⟩] ∼ ∧ 𝑧 = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) ↔
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
44 | 43 | 4exbidv 1870 |
. . . 4
⊢ ((𝑥 = [⟨𝐴, 𝐵⟩] ∼ ∧ 𝑦 = [⟨𝐶, 𝐷⟩] ∼ ∧ 𝑧 = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) →
(∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) ↔
∃𝑤∃𝑣∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
45 | | th3q.2 |
. . . . 5
⊢ ∼ Er
(𝑆 × 𝑆) |
46 | | th3q.4 |
. . . . 5
⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) |
47 | 2, 45, 46 | th3qlem2 6640 |
. . . 4
⊢ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
48 | | th3q.5 |
. . . 4
⊢ 𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))} |
49 | 44, 47, 48 | ovig 5998 |
. . 3
⊢
(([⟨𝐴, 𝐵⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ ) ∧
[⟨𝐶, 𝐷⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ∈ V) →
(∃𝑤∃𝑣∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) →
([⟨𝐴, 𝐵⟩] ∼ 𝐺[⟨𝐶, 𝐷⟩] ∼ ) = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ )) |
50 | 37, 49 | mp3an3 1326 |
. 2
⊢
(([⟨𝐴, 𝐵⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ ) ∧
[⟨𝐶, 𝐷⟩] ∼ ∈ ((𝑆 × 𝑆) / ∼ )) →
(∃𝑤∃𝑣∃𝑢∃𝑡(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑤, 𝑣⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) ∧
[(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) →
([⟨𝐴, 𝐵⟩] ∼ 𝐺[⟨𝐶, 𝐷⟩] ∼ ) = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ )) |
51 | 8, 35, 50 | sylc 62 |
1
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([⟨𝐴, 𝐵⟩] ∼ 𝐺[⟨𝐶, 𝐷⟩] ∼ ) = [(⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)] ∼ ) |