Step | Hyp | Ref
| Expression |
1 | | opelxpi 4636 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ 〈𝐴, 𝐵〉 ∈ (P
× P)) |
2 | | enrex 7678 |
. . . . 5
⊢
~R ∈ V |
3 | 2 | ecelqsi 6555 |
. . . 4
⊢
(〈𝐴, 𝐵〉 ∈ (P
× P) → [〈𝐴, 𝐵〉] ~R ∈
((P × P) / ~R
)) |
4 | 1, 3 | syl 14 |
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ [〈𝐴, 𝐵〉]
~R ∈ ((P × P)
/ ~R )) |
5 | | opelxpi 4636 |
. . . 4
⊢ ((𝐶 ∈ P ∧
𝐷 ∈ P)
→ 〈𝐶, 𝐷〉 ∈ (P
× P)) |
6 | 2 | ecelqsi 6555 |
. . . 4
⊢
(〈𝐶, 𝐷〉 ∈ (P
× P) → [〈𝐶, 𝐷〉] ~R ∈
((P × P) / ~R
)) |
7 | 5, 6 | syl 14 |
. . 3
⊢ ((𝐶 ∈ P ∧
𝐷 ∈ P)
→ [〈𝐶, 𝐷〉]
~R ∈ ((P × P)
/ ~R )) |
8 | 4, 7 | anim12i 336 |
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ([〈𝐴, 𝐵〉] ~R ∈
((P × P) / ~R
) ∧ [〈𝐶, 𝐷〉]
~R ∈ ((P × P)
/ ~R ))) |
9 | | eqid 2165 |
. . . 4
⊢
[〈𝐴, 𝐵〉]
~R = [〈𝐴, 𝐵〉]
~R |
10 | | eqid 2165 |
. . . 4
⊢
[〈𝐶, 𝐷〉]
~R = [〈𝐶, 𝐷〉]
~R |
11 | 9, 10 | pm3.2i 270 |
. . 3
⊢
([〈𝐴, 𝐵〉]
~R = [〈𝐴, 𝐵〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R
) |
12 | | eqid 2165 |
. . 3
⊢
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R |
13 | | opeq12 3760 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → 〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉) |
14 | 13 | eceq1d 6537 |
. . . . . . . 8
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → [〈𝑤, 𝑣〉] ~R =
[〈𝐴, 𝐵〉] ~R
) |
15 | 14 | eqeq2d 2177 |
. . . . . . 7
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → ([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ↔ [〈𝐴, 𝐵〉] ~R =
[〈𝐴, 𝐵〉] ~R
)) |
16 | 15 | anbi1d 461 |
. . . . . 6
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → (([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ↔
([〈𝐴, 𝐵〉]
~R = [〈𝐴, 𝐵〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R
))) |
17 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑤 = 𝐴) |
18 | 17 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑤 +P 𝐶) = (𝐴 +P 𝐶)) |
19 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) |
20 | 19 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣 +P 𝐷) = (𝐵 +P 𝐷)) |
21 | 18, 20 | opeq12d 3766 |
. . . . . . . 8
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → 〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉 = 〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉) |
22 | 21 | eceq1d 6537 |
. . . . . . 7
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R ) |
23 | 22 | eqeq2d 2177 |
. . . . . 6
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → ([〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ↔ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R )) |
24 | 16, 23 | anbi12d 465 |
. . . . 5
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → ((([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ) ↔ (([〈𝐴, 𝐵〉] ~R =
[〈𝐴, 𝐵〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R ))) |
25 | 24 | spc2egv 2816 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((([〈𝐴, 𝐵〉]
~R = [〈𝐴, 𝐵〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R ) → ∃𝑤∃𝑣(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ))) |
26 | | opeq12 3760 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → 〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉) |
27 | 26 | eceq1d 6537 |
. . . . . . . . 9
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → [〈𝑢, 𝑡〉] ~R =
[〈𝐶, 𝐷〉] ~R
) |
28 | 27 | eqeq2d 2177 |
. . . . . . . 8
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → ([〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ↔ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R
)) |
29 | 28 | anbi2d 460 |
. . . . . . 7
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → (([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ↔ ([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R
))) |
30 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → 𝑢 = 𝐶) |
31 | 30 | oveq2d 5858 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑤 +P 𝑢) = (𝑤 +P 𝐶)) |
32 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → 𝑡 = 𝐷) |
33 | 32 | oveq2d 5858 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑣 +P 𝑡) = (𝑣 +P 𝐷)) |
34 | 31, 33 | opeq12d 3766 |
. . . . . . . . 9
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → 〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉 = 〈(𝑤 +P
𝐶), (𝑣 +P 𝐷)〉) |
35 | 34 | eceq1d 6537 |
. . . . . . . 8
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ) |
36 | 35 | eqeq2d 2177 |
. . . . . . 7
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → ([〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ↔ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R )) |
37 | 29, 36 | anbi12d 465 |
. . . . . 6
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → ((([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ) ↔ (([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ))) |
38 | 37 | spc2egv 2816 |
. . . . 5
⊢ ((𝐶 ∈ P ∧
𝐷 ∈ P)
→ ((([〈𝐴, 𝐵〉]
~R = [〈𝑤, 𝑣〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ) → ∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ))) |
39 | 38 | 2eximdv 1870 |
. . . 4
⊢ ((𝐶 ∈ P ∧
𝐷 ∈ P)
→ (∃𝑤∃𝑣(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝐶), (𝑣 +P 𝐷)〉]
~R ) → ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ))) |
40 | 25, 39 | sylan9 407 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ((([〈𝐴, 𝐵〉] ~R =
[〈𝐴, 𝐵〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝐶, 𝐷〉] ~R ) ∧
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R ) → ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ))) |
41 | 11, 12, 40 | mp2ani 429 |
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R )) |
42 | | ecexg 6505 |
. . . 4
⊢ (
~R ∈ V → [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R ∈ V) |
43 | 2, 42 | ax-mp 5 |
. . 3
⊢
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R ∈ V |
44 | | simp1 987 |
. . . . . . . 8
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → 𝑥 = [〈𝐴, 𝐵〉] ~R
) |
45 | 44 | eqeq1d 2174 |
. . . . . . 7
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → (𝑥 = [〈𝑤, 𝑣〉] ~R ↔
[〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R )) |
46 | | simp2 988 |
. . . . . . . 8
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → 𝑦 = [〈𝐶, 𝐷〉] ~R
) |
47 | 46 | eqeq1d 2174 |
. . . . . . 7
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → (𝑦 = [〈𝑢, 𝑡〉] ~R ↔
[〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R )) |
48 | 45, 47 | anbi12d 465 |
. . . . . 6
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → ((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ↔
([〈𝐴, 𝐵〉]
~R = [〈𝑤, 𝑣〉] ~R ∧
[〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ))) |
49 | | simp3 989 |
. . . . . . 7
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → 𝑧 = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R ) |
50 | 49 | eqeq1d 2174 |
. . . . . 6
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → (𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ↔ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R )) |
51 | 48, 50 | anbi12d 465 |
. . . . 5
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → (((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ) ↔ (([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ))) |
52 | 51 | 4exbidv 1858 |
. . . 4
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~R ∧
𝑦 = [〈𝐶, 𝐷〉] ~R ∧
𝑧 = [〈(𝐴 +P
𝐶), (𝐵 +P 𝐷)〉]
~R ) → (∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ) ↔ ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ))) |
53 | | addsrmo 7684 |
. . . 4
⊢ ((𝑥 ∈ ((P
× P) / ~R ) ∧ 𝑦 ∈ ((P
× P) / ~R )) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R )) |
54 | | df-plr 7669 |
. . . . 5
⊢
+R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ))} |
55 | | df-nr 7668 |
. . . . . . . . 9
⊢
R = ((P × P) /
~R ) |
56 | 55 | eleq2i 2233 |
. . . . . . . 8
⊢ (𝑥 ∈ R ↔
𝑥 ∈ ((P
× P) / ~R
)) |
57 | 55 | eleq2i 2233 |
. . . . . . . 8
⊢ (𝑦 ∈ R ↔
𝑦 ∈ ((P
× P) / ~R
)) |
58 | 56, 57 | anbi12i 456 |
. . . . . . 7
⊢ ((𝑥 ∈ R ∧
𝑦 ∈ R)
↔ (𝑥 ∈
((P × P) / ~R
) ∧ 𝑦 ∈
((P × P) / ~R
))) |
59 | 58 | anbi1i 454 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R )) ↔ ((𝑥 ∈ ((P ×
P) / ~R ) ∧ 𝑦 ∈ ((P
× P) / ~R )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ))) |
60 | 59 | oprabbii 5897 |
. . . . 5
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((P ×
P) / ~R ) ∧ 𝑦 ∈ ((P
× P) / ~R )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ))} |
61 | 54, 60 | eqtri 2186 |
. . . 4
⊢
+R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((P ×
P) / ~R ) ∧ 𝑦 ∈ ((P
× P) / ~R )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑡〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑡)〉]
~R ))} |
62 | 52, 53, 61 | ovig 5963 |
. . 3
⊢
(([〈𝐴, 𝐵〉]
~R ∈ ((P × P)
/ ~R ) ∧ [〈𝐶, 𝐷〉] ~R ∈
((P × P) / ~R
) ∧ [〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R ∈ V) → (∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ) → ([〈𝐴, 𝐵〉] ~R
+R [〈𝐶, 𝐷〉] ~R ) =
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R )) |
63 | 43, 62 | mp3an3 1316 |
. 2
⊢
(([〈𝐴, 𝐵〉]
~R ∈ ((P × P)
/ ~R ) ∧ [〈𝐶, 𝐷〉] ~R ∈
((P × P) / ~R
)) → (∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~R =
[〈𝑤, 𝑣〉]
~R ∧ [〈𝐶, 𝐷〉] ~R =
[〈𝑢, 𝑡〉]
~R ) ∧ [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉]
~R = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉]
~R ) → ([〈𝐴, 𝐵〉] ~R
+R [〈𝐶, 𝐷〉] ~R ) =
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R )) |
64 | 8, 41, 63 | sylc 62 |
1
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ([〈𝐴, 𝐵〉] ~R
+R [〈𝐶, 𝐷〉] ~R ) =
[〈(𝐴
+P 𝐶), (𝐵 +P 𝐷)〉]
~R ) |