ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrpr GIF version

Theorem addsrpr 7686
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
addsrpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )

Proof of Theorem addsrpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4636 . . . 4 ((𝐴P𝐵P) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
2 enrex 7678 . . . . 5 ~R ∈ V
32ecelqsi 6555 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (P × P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
41, 3syl 14 . . 3 ((𝐴P𝐵P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
5 opelxpi 4636 . . . 4 ((𝐶P𝐷P) → ⟨𝐶, 𝐷⟩ ∈ (P × P))
62ecelqsi 6555 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (P × P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
75, 6syl 14 . . 3 ((𝐶P𝐷P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
84, 7anim12i 336 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )))
9 eqid 2165 . . . 4 [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R
10 eqid 2165 . . . 4 [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R
119, 10pm3.2i 270 . . 3 ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
12 eqid 2165 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R
13 opeq12 3760 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 6537 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝐴, 𝐵⟩] ~R )
1514eqeq2d 2177 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ))
1615anbi1d 461 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
17 simpl 108 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 5857 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 +P 𝐶) = (𝐴 +P 𝐶))
19 simpr 109 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 5857 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 +P 𝐷) = (𝐵 +P 𝐷))
2118, 20opeq12d 3766 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩ = ⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩)
2221eceq1d 6537 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
2322eqeq2d 2177 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
2416, 23anbi12d 465 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )))
2524spc2egv 2816 . . . 4 ((𝐴P𝐵P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
26 opeq12 3760 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2726eceq1d 6537 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
2827eqeq2d 2177 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ))
2928anbi2d 460 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
30 simpl 108 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3130oveq2d 5858 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 +P 𝑢) = (𝑤 +P 𝐶))
32 simpr 109 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 5858 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 +P 𝑡) = (𝑣 +P 𝐷))
3431, 33opeq12d 3766 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩)
3534eceq1d 6537 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )
3635eqeq2d 2177 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ))
3729, 36anbi12d 465 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
3837spc2egv 2816 . . . . 5 ((𝐶P𝐷P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
39382eximdv 1870 . . . 4 ((𝐶P𝐷P) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4025, 39sylan9 407 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4111, 12, 40mp2ani 429 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
42 ecexg 6505 . . . 4 ( ~R ∈ V → [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V)
432, 42ax-mp 5 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V
44 simp1 987 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~R )
4544eqeq1d 2174 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ))
46 simp2 988 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~R )
4746eqeq1d 2174 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ))
4845, 47anbi12d 465 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R )))
49 simp3 989 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
5049eqeq1d 2174 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5148, 50anbi12d 465 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1858 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
53 addsrmo 7684 . . . 4 ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
54 df-plr 7669 . . . . 5 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
55 df-nr 7668 . . . . . . . . 9 R = ((P × P) / ~R )
5655eleq2i 2233 . . . . . . . 8 (𝑥R𝑥 ∈ ((P × P) / ~R ))
5755eleq2i 2233 . . . . . . . 8 (𝑦R𝑦 ∈ ((P × P) / ~R ))
5856, 57anbi12i 456 . . . . . . 7 ((𝑥R𝑦R) ↔ (𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )))
5958anbi1i 454 . . . . . 6 (((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
6059oprabbii 5897 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6154, 60eqtri 2186 . . . 4 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6252, 53, 61ovig 5963 . . 3 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
6343, 62mp3an3 1316 . 2 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
648, 41, 63sylc 62 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cop 3579   × cxp 4602  (class class class)co 5842  {coprab 5843  [cec 6499   / cqs 6500  Pcnp 7232   +P cpp 7234   ~R cer 7237  Rcnr 7238   +R cplr 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-enr 7667  df-nr 7668  df-plr 7669
This theorem is referenced by:  addclsr  7694  addcomsrg  7696  addasssrg  7697  distrsrg  7700  m1p1sr  7701  0idsr  7708  ltasrg  7711  prsradd  7727  pitonnlem2  7788
  Copyright terms: Public domain W3C validator