ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrpr GIF version

Theorem addsrpr 7829
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
addsrpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )

Proof of Theorem addsrpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4696 . . . 4 ((𝐴P𝐵P) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
2 enrex 7821 . . . . 5 ~R ∈ V
32ecelqsi 6657 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (P × P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
41, 3syl 14 . . 3 ((𝐴P𝐵P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
5 opelxpi 4696 . . . 4 ((𝐶P𝐷P) → ⟨𝐶, 𝐷⟩ ∈ (P × P))
62ecelqsi 6657 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (P × P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
75, 6syl 14 . . 3 ((𝐶P𝐷P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
84, 7anim12i 338 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )))
9 eqid 2196 . . . 4 [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R
10 eqid 2196 . . . 4 [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R
119, 10pm3.2i 272 . . 3 ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
12 eqid 2196 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R
13 opeq12 3811 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 6637 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝐴, 𝐵⟩] ~R )
1514eqeq2d 2208 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ))
1615anbi1d 465 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
17 simpl 109 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 5940 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 +P 𝐶) = (𝐴 +P 𝐶))
19 simpr 110 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 5940 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 +P 𝐷) = (𝐵 +P 𝐷))
2118, 20opeq12d 3817 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩ = ⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩)
2221eceq1d 6637 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
2322eqeq2d 2208 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
2416, 23anbi12d 473 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )))
2524spc2egv 2854 . . . 4 ((𝐴P𝐵P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
26 opeq12 3811 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2726eceq1d 6637 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
2827eqeq2d 2208 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ))
2928anbi2d 464 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
30 simpl 109 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3130oveq2d 5941 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 +P 𝑢) = (𝑤 +P 𝐶))
32 simpr 110 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 5941 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 +P 𝑡) = (𝑣 +P 𝐷))
3431, 33opeq12d 3817 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩)
3534eceq1d 6637 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )
3635eqeq2d 2208 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ))
3729, 36anbi12d 473 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
3837spc2egv 2854 . . . . 5 ((𝐶P𝐷P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
39382eximdv 1896 . . . 4 ((𝐶P𝐷P) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4025, 39sylan9 409 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4111, 12, 40mp2ani 432 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
42 ecexg 6605 . . . 4 ( ~R ∈ V → [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V)
432, 42ax-mp 5 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V
44 simp1 999 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~R )
4544eqeq1d 2205 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ))
46 simp2 1000 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~R )
4746eqeq1d 2205 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ))
4845, 47anbi12d 473 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R )))
49 simp3 1001 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
5049eqeq1d 2205 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5148, 50anbi12d 473 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1884 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
53 addsrmo 7827 . . . 4 ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
54 df-plr 7812 . . . . 5 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
55 df-nr 7811 . . . . . . . . 9 R = ((P × P) / ~R )
5655eleq2i 2263 . . . . . . . 8 (𝑥R𝑥 ∈ ((P × P) / ~R ))
5755eleq2i 2263 . . . . . . . 8 (𝑦R𝑦 ∈ ((P × P) / ~R ))
5856, 57anbi12i 460 . . . . . . 7 ((𝑥R𝑦R) ↔ (𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )))
5958anbi1i 458 . . . . . 6 (((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
6059oprabbii 5981 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6154, 60eqtri 2217 . . . 4 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6252, 53, 61ovig 6048 . . 3 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
6343, 62mp3an3 1337 . 2 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
648, 41, 63sylc 62 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3626   × cxp 4662  (class class class)co 5925  {coprab 5926  [cec 6599   / cqs 6600  Pcnp 7375   +P cpp 7377   ~R cer 7380  Rcnr 7381   +R cplr 7385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-enr 7810  df-nr 7811  df-plr 7812
This theorem is referenced by:  addclsr  7837  addcomsrg  7839  addasssrg  7840  distrsrg  7843  m1p1sr  7844  0idsr  7851  ltasrg  7854  prsradd  7870  pitonnlem2  7931
  Copyright terms: Public domain W3C validator