ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnnnq0 GIF version

Theorem mulnnnq0 7517
Description: Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
Assertion
Ref Expression
mulnnnq0 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )

Proof of Theorem mulnnnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4695 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
2 enq0ex 7506 . . . . 5 ~Q0 ∈ V
32ecelqsi 6648 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ω × N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
41, 3syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
5 opelxpi 4695 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
62ecelqsi 6648 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (ω × N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
75, 6syl 14 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
84, 7anim12i 338 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
9 eqid 2196 . . . 4 [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0
10 eqid 2196 . . . 4 [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0
119, 10pm3.2i 272 . . 3 ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
12 eqid 2196 . . 3 [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0
13 opeq12 3810 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
14 eceq1 6627 . . . . . . . . 9 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 )
1514eqeq2d 2208 . . . . . . . 8 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ))
1615anbi1d 465 . . . . . . 7 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
17 vex 2766 . . . . . . . . . . 11 𝑤 ∈ V
18 vex 2766 . . . . . . . . . . 11 𝑣 ∈ V
1917, 18opth 4270 . . . . . . . . . 10 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑤 = 𝐴𝑣 = 𝐵))
20 oveq1 5929 . . . . . . . . . . . 12 (𝑤 = 𝐴 → (𝑤 ·o 𝐶) = (𝐴 ·o 𝐶))
2120adantr 276 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 ·o 𝐶) = (𝐴 ·o 𝐶))
22 oveq1 5929 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑣 ·o 𝐷) = (𝐵 ·o 𝐷))
2322adantl 277 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·o 𝐷) = (𝐵 ·o 𝐷))
2421, 23opeq12d 3816 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩ = ⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩)
2519, 24sylbi 121 . . . . . . . . 9 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩ = ⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩)
2625eceq1d 6628 . . . . . . . 8 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )
2726eqeq2d 2208 . . . . . . 7 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ([⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 ↔ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ))
2816, 27anbi12d 473 . . . . . 6 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )))
2913, 28syl 14 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )))
3029spc2egv 2854 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 )))
31 opeq12 3810 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
32 eceq1 6627 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
3332eqeq2d 2208 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ([⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ))
3433anbi2d 464 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
35 vex 2766 . . . . . . . . . . . 12 𝑢 ∈ V
36 vex 2766 . . . . . . . . . . . 12 𝑡 ∈ V
3735, 36opth 4270 . . . . . . . . . . 11 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑢 = 𝐶𝑡 = 𝐷))
38 oveq2 5930 . . . . . . . . . . . . 13 (𝑢 = 𝐶 → (𝑤 ·o 𝑢) = (𝑤 ·o 𝐶))
3938adantr 276 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 ·o 𝑢) = (𝑤 ·o 𝐶))
40 oveq2 5930 . . . . . . . . . . . . 13 (𝑡 = 𝐷 → (𝑣 ·o 𝑡) = (𝑣 ·o 𝐷))
4140adantl 277 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·o 𝑡) = (𝑣 ·o 𝐷))
4239, 41opeq12d 3816 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩ = ⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩)
4337, 42sylbi 121 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩ = ⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩)
4443eceq1d 6628 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 )
4544eqeq2d 2208 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ([⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ↔ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 ))
4634, 45anbi12d 473 . . . . . . 7 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 )))
4731, 46syl 14 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 )))
4847spc2egv 2854 . . . . 5 ((𝐶 ∈ ω ∧ 𝐷N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 )))
49482eximdv 1896 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 )))
5030, 49sylan9 409 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 )))
5111, 12, 50mp2ani 432 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ))
52 ecexg 6596 . . . 4 ( ~Q0 ∈ V → [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V)
532, 52ax-mp 5 . . 3 [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V
54 eqeq1 2203 . . . . . . . 8 (𝑥 = [⟨𝐴, 𝐵⟩] ~Q0 → (𝑥 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ))
55 eqeq1 2203 . . . . . . . 8 (𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 → (𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ))
5654, 55bi2anan9 606 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 )))
57 eqeq1 2203 . . . . . . 7 (𝑧 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 → (𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ↔ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ))
5856, 57bi2anan9 606 . . . . . 6 (((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 )))
59583impa 1196 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 )))
60594exbidv 1884 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 )))
61 mulnq0mo 7515 . . . 4 ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ))
62 dfmq0qs 7496 . . . 4 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ))}
6360, 61, 62ovig 6044 . . 3 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ))
6453, 63mp3an3 1337 . 2 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 ))
658, 51, 64sylc 62 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3625  ωcom 4626   × cxp 4661  (class class class)co 5922   ·o comu 6472  [cec 6590   / cqs 6591  Ncnpi 7339   ~Q0 ceq0 7353   ·Q0 cmq0 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-enq0 7491  df-nq0 7492  df-mq0 7495
This theorem is referenced by:  mulclnq0  7519  nqnq0m  7522  nq0m0r  7523  distrnq0  7526  mulcomnq0  7527  nq02m  7532
  Copyright terms: Public domain W3C validator