| Step | Hyp | Ref
 | Expression | 
| 1 |   | opelxpi 4695 | 
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) →
〈𝐴, 𝐵〉 ∈ (ω ×
N)) | 
| 2 |   | enq0ex 7506 | 
. . . . 5
⊢ 
~Q0 ∈ V | 
| 3 | 2 | ecelqsi 6648 | 
. . . 4
⊢
(〈𝐴, 𝐵〉 ∈ (ω ×
N) → [〈𝐴, 𝐵〉] ~Q0 ∈
((ω × N) / ~Q0
)) | 
| 4 | 1, 3 | syl 14 | 
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) →
[〈𝐴, 𝐵〉] ~Q0 ∈
((ω × N) / ~Q0
)) | 
| 5 |   | opelxpi 4695 | 
. . . 4
⊢ ((𝐶 ∈ ω ∧ 𝐷 ∈ N) →
〈𝐶, 𝐷〉 ∈ (ω ×
N)) | 
| 6 | 2 | ecelqsi 6648 | 
. . . 4
⊢
(〈𝐶, 𝐷〉 ∈ (ω ×
N) → [〈𝐶, 𝐷〉] ~Q0 ∈
((ω × N) / ~Q0
)) | 
| 7 | 5, 6 | syl 14 | 
. . 3
⊢ ((𝐶 ∈ ω ∧ 𝐷 ∈ N) →
[〈𝐶, 𝐷〉] ~Q0 ∈
((ω × N) / ~Q0
)) | 
| 8 | 4, 7 | anim12i 338 | 
. 2
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
→ ([〈𝐴, 𝐵〉]
~Q0 ∈ ((ω × N) /
~Q0 ) ∧ [〈𝐶, 𝐷〉] ~Q0 ∈
((ω × N) / ~Q0
))) | 
| 9 |   | eqid 2196 | 
. . . 4
⊢
[〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉]
~Q0 | 
| 10 |   | eqid 2196 | 
. . . 4
⊢
[〈𝐶, 𝐷〉]
~Q0 = [〈𝐶, 𝐷〉]
~Q0 | 
| 11 | 9, 10 | pm3.2i 272 | 
. . 3
⊢
([〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0
) | 
| 12 |   | eqid 2196 | 
. . 3
⊢
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉]
~Q0 | 
| 13 |   | opeq12 3810 | 
. . . . . 6
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → 〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉) | 
| 14 |   | eceq1 6627 | 
. . . . . . . . 9
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → [〈𝑤, 𝑣〉] ~Q0 =
[〈𝐴, 𝐵〉] ~Q0
) | 
| 15 | 14 | eqeq2d 2208 | 
. . . . . . . 8
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → ([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ↔ [〈𝐴, 𝐵〉] ~Q0 =
[〈𝐴, 𝐵〉] ~Q0
)) | 
| 16 | 15 | anbi1d 465 | 
. . . . . . 7
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → (([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 )
↔ ([〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0
))) | 
| 17 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑤 ∈ V | 
| 18 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑣 ∈ V | 
| 19 | 17, 18 | opth 4270 | 
. . . . . . . . . 10
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 ↔ (𝑤 = 𝐴 ∧ 𝑣 = 𝐵)) | 
| 20 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐴 → (𝑤 ·o 𝐶) = (𝐴 ·o 𝐶)) | 
| 21 | 20 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑤 ·o 𝐶) = (𝐴 ·o 𝐶)) | 
| 22 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐵 → (𝑣 ·o 𝐷) = (𝐵 ·o 𝐷)) | 
| 23 | 22 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣 ·o 𝐷) = (𝐵 ·o 𝐷)) | 
| 24 | 21, 23 | opeq12d 3816 | 
. . . . . . . . . 10
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → 〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉 = 〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉) | 
| 25 | 19, 24 | sylbi 121 | 
. . . . . . . . 9
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → 〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉 = 〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉) | 
| 26 | 25 | eceq1d 6628 | 
. . . . . . . 8
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0 =
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 ) | 
| 27 | 26 | eqeq2d 2208 | 
. . . . . . 7
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → ([〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝐶),
(𝑣 ·o
𝐷)〉]
~Q0 ↔ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 )) | 
| 28 | 16, 27 | anbi12d 473 | 
. . . . . 6
⊢
(〈𝑤, 𝑣〉 = 〈𝐴, 𝐵〉 → ((([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0 )
↔ (([〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0
))) | 
| 29 | 13, 28 | syl 14 | 
. . . . 5
⊢ ((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) → ((([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0 )
↔ (([〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0
))) | 
| 30 | 29 | spc2egv 2854 | 
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) →
((([〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 )
→ ∃𝑤∃𝑣(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0
))) | 
| 31 |   | opeq12 3810 | 
. . . . . . 7
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → 〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉) | 
| 32 |   | eceq1 6627 | 
. . . . . . . . . 10
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → [〈𝑢, 𝑡〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0
) | 
| 33 | 32 | eqeq2d 2208 | 
. . . . . . . . 9
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → ([〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ↔ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0
)) | 
| 34 | 33 | anbi2d 464 | 
. . . . . . . 8
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → (([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ↔ ([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0
))) | 
| 35 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑢 ∈ V | 
| 36 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑡 ∈ V | 
| 37 | 35, 36 | opth 4270 | 
. . . . . . . . . . 11
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 ↔ (𝑢 = 𝐶 ∧ 𝑡 = 𝐷)) | 
| 38 |   | oveq2 5930 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝐶 → (𝑤 ·o 𝑢) = (𝑤 ·o 𝐶)) | 
| 39 | 38 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑤 ·o 𝑢) = (𝑤 ·o 𝐶)) | 
| 40 |   | oveq2 5930 | 
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝐷 → (𝑣 ·o 𝑡) = (𝑣 ·o 𝐷)) | 
| 41 | 40 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑣 ·o 𝑡) = (𝑣 ·o 𝐷)) | 
| 42 | 39, 41 | opeq12d 3816 | 
. . . . . . . . . . 11
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → 〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉 = 〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉) | 
| 43 | 37, 42 | sylbi 121 | 
. . . . . . . . . 10
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → 〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉 = 〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉) | 
| 44 | 43 | eceq1d 6628 | 
. . . . . . . . 9
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 =
[〈(𝑤
·o 𝐶),
(𝑣 ·o
𝐷)〉]
~Q0 ) | 
| 45 | 44 | eqeq2d 2208 | 
. . . . . . . 8
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → ([〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ↔ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝐶),
(𝑣 ·o
𝐷)〉]
~Q0 )) | 
| 46 | 34, 45 | anbi12d 473 | 
. . . . . . 7
⊢
(〈𝑢, 𝑡〉 = 〈𝐶, 𝐷〉 → ((([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ) ↔ (([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0
))) | 
| 47 | 31, 46 | syl 14 | 
. . . . . 6
⊢ ((𝑢 = 𝐶 ∧ 𝑡 = 𝐷) → ((([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ) ↔ (([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0
))) | 
| 48 | 47 | spc2egv 2854 | 
. . . . 5
⊢ ((𝐶 ∈ ω ∧ 𝐷 ∈ N) →
((([〈𝐴, 𝐵〉]
~Q0 = [〈𝑤, 𝑣〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0 )
→ ∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ))) | 
| 49 | 48 | 2eximdv 1896 | 
. . . 4
⊢ ((𝐶 ∈ ω ∧ 𝐷 ∈ N) →
(∃𝑤∃𝑣(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝐶), (𝑣 ·o 𝐷)〉] ~Q0 )
→ ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ))) | 
| 50 | 30, 49 | sylan9 409 | 
. . 3
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
→ ((([〈𝐴, 𝐵〉]
~Q0 = [〈𝐴, 𝐵〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝐶, 𝐷〉] ~Q0 ) ∧
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 )
→ ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ))) | 
| 51 | 11, 12, 50 | mp2ani 432 | 
. 2
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
→ ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 )) | 
| 52 |   | ecexg 6596 | 
. . . 4
⊢ (
~Q0 ∈ V → [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 ∈
V) | 
| 53 | 2, 52 | ax-mp 5 | 
. . 3
⊢
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 ∈ V | 
| 54 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = [〈𝐴, 𝐵〉] ~Q0 →
(𝑥 = [〈𝑤, 𝑣〉] ~Q0 ↔
[〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 )) | 
| 55 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑦 = [〈𝐶, 𝐷〉] ~Q0 →
(𝑦 = [〈𝑢, 𝑡〉] ~Q0 ↔
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 )) | 
| 56 | 54, 55 | bi2anan9 606 | 
. . . . . . 7
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~Q0 ∧
𝑦 = [〈𝐶, 𝐷〉] ~Q0 )
→ ((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑡〉] ~Q0 ) ↔
([〈𝐴, 𝐵〉]
~Q0 = [〈𝑤, 𝑣〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ))) | 
| 57 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑧 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 →
(𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 ↔
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0
)) | 
| 58 | 56, 57 | bi2anan9 606 | 
. . . . . 6
⊢ (((𝑥 = [〈𝐴, 𝐵〉] ~Q0 ∧
𝑦 = [〈𝐶, 𝐷〉] ~Q0 ) ∧
𝑧 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 )
→ (((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 )
↔ (([〈𝐴, 𝐵〉]
~Q0 = [〈𝑤, 𝑣〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ))) | 
| 59 | 58 | 3impa 1196 | 
. . . . 5
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~Q0 ∧
𝑦 = [〈𝐶, 𝐷〉] ~Q0 ∧
𝑧 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 )
→ (((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 )
↔ (([〈𝐴, 𝐵〉]
~Q0 = [〈𝑤, 𝑣〉] ~Q0 ∧
[〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ))) | 
| 60 | 59 | 4exbidv 1884 | 
. . . 4
⊢ ((𝑥 = [〈𝐴, 𝐵〉] ~Q0 ∧
𝑦 = [〈𝐶, 𝐷〉] ~Q0 ∧
𝑧 = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 )
→ (∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 )
↔ ∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ))) | 
| 61 |   | mulnq0mo 7515 | 
. . . 4
⊢ ((𝑥 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝑦 ∈ ((ω ×
N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0
)) | 
| 62 |   | dfmq0qs 7496 | 
. . . 4
⊢ 
·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N)
/ ~Q0 ) ∧ 𝑦 ∈ ((ω × N)
/ ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0
))} | 
| 63 | 60, 61, 62 | ovig 6044 | 
. . 3
⊢
(([〈𝐴, 𝐵〉]
~Q0 ∈ ((ω × N) /
~Q0 ) ∧ [〈𝐶, 𝐷〉] ~Q0 ∈
((ω × N) / ~Q0 )
∧ [〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 ∈ V) → (∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ) → ([〈𝐴, 𝐵〉] ~Q0
·Q0 [〈𝐶, 𝐷〉] ~Q0 ) =
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 )) | 
| 64 | 53, 63 | mp3an3 1337 | 
. 2
⊢
(([〈𝐴, 𝐵〉]
~Q0 ∈ ((ω × N) /
~Q0 ) ∧ [〈𝐶, 𝐷〉] ~Q0 ∈
((ω × N) / ~Q0 ))
→ (∃𝑤∃𝑣∃𝑢∃𝑡(([〈𝐴, 𝐵〉] ~Q0 =
[〈𝑤, 𝑣〉]
~Q0 ∧ [〈𝐶, 𝐷〉] ~Q0 =
[〈𝑢, 𝑡〉]
~Q0 ) ∧ [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 =
[〈(𝑤
·o 𝑢),
(𝑣 ·o
𝑡)〉]
~Q0 ) → ([〈𝐴, 𝐵〉] ~Q0
·Q0 [〈𝐶, 𝐷〉] ~Q0 ) =
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 )) | 
| 65 | 8, 51, 64 | sylc 62 | 
1
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
→ ([〈𝐴, 𝐵〉]
~Q0 ·Q0 [〈𝐶, 𝐷〉] ~Q0 ) =
[〈(𝐴
·o 𝐶),
(𝐵 ·o
𝐷)〉]
~Q0 ) |