Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpi | GIF version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 | ⊢ 𝜓 |
mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mpi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 430 pm2.24i 618 simplimdc 855 mp3an3 1321 3impexpbicom 1431 mpisyl 1439 equcomi 1697 equsex 1721 equsexd 1722 spimt 1729 spimeh 1732 equvini 1751 equveli 1752 sbcof2 1803 dveeq2 1808 ax11v2 1813 ax16i 1851 pm13.183 2868 euxfr2dc 2915 sbcth 2968 sbcth2 3042 ssun3 3292 ssun4 3293 ralf0 3518 exmidexmid 4182 rext 4200 exss 4212 uniopel 4241 onsucelsucexmid 4514 suc11g 4541 eunex 4545 ordsoexmid 4546 tfisi 4571 finds1 4586 omsinds 4606 relop 4761 dmrnssfld 4874 iss 4937 relcoi1 5142 nfunv 5231 funimass2 5276 fvssunirng 5511 fvmptg 5572 oprabidlem 5884 fovcl 5958 elovmpo 6050 tfrlem1 6287 oaword1 6450 0domg 6815 diffifi 6872 exmidpw 6886 djulclb 7032 0ct 7084 nlt1pig 7303 dmaddpq 7341 dmmulpq 7342 archnqq 7379 prarloclemarch2 7381 prarloclemlt 7455 cnegex 8097 nnge1 8901 zneo 9313 fsum2d 11398 fsumabs 11428 fsumiun 11440 fprod2d 11586 efne0 11641 nn0o1gt2 11864 ennnfonelemex 12369 qtopbasss 13315 reeff1o 13488 coseq0negpitopi 13551 cos02pilt1 13566 logltb 13589 bdop 13910 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |