| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpi | GIF version | ||
| Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
| Ref | Expression |
|---|---|
| mpi.1 | ⊢ 𝜓 |
| mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mpi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpi.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 624 simplimdc 861 mp3an3 1337 3impexpbicom 1449 mpisyl 1457 equcomi 1718 equsex 1742 equsexd 1743 spimt 1750 spimeh 1753 equvini 1772 equveli 1773 sbcof2 1824 dveeq2 1829 ax11v2 1834 ax16i 1872 pm13.183 2902 euxfr2dc 2949 sbcth 3003 sbcth2 3077 ssun3 3328 ssun4 3329 ralf0 3553 exmidexmid 4229 rext 4248 exss 4260 uniopel 4289 onsucelsucexmid 4566 suc11g 4593 eunex 4597 ordsoexmid 4598 tfisi 4623 finds1 4638 omsinds 4658 relop 4816 dmrnssfld 4929 iss 4992 relcoi1 5201 nfunv 5291 funimass2 5336 fvssunirng 5573 fvmptg 5637 oprabidlem 5953 elovmpo 6122 tfrlem1 6366 oaword1 6529 0domg 6898 diffifi 6955 exmidpw 6969 djulclb 7121 0ct 7173 nlt1pig 7408 dmaddpq 7446 dmmulpq 7447 archnqq 7484 prarloclemarch2 7486 prarloclemlt 7560 cnegex 8204 nnge1 9013 zneo 9427 fsum2d 11600 fsumabs 11630 fsumiun 11642 fprod2d 11788 efne0 11843 nn0o1gt2 12070 ennnfonelemex 12631 qtopbasss 14757 ivthdichlem 14887 dvmptfsum 14961 reeff1o 15009 coseq0negpitopi 15072 cos02pilt1 15087 logltb 15110 gausslemma2dlem0i 15298 2lgs 15345 bdop 15521 bj-nntrans 15597 |
| Copyright terms: Public domain | W3C validator |