| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpi | GIF version | ||
| Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
| Ref | Expression |
|---|---|
| mpi.1 | ⊢ 𝜓 |
| mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mpi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpi.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 626 simplimdc 865 mp3an3 1360 3impexpbicom 1481 mpisyl 1489 equcomi 1750 equsex 1774 equsexd 1775 spimt 1782 spimeh 1785 equvini 1804 equveli 1805 sbcof2 1856 dveeq2 1861 ax11v2 1866 ax16i 1904 pm13.183 2941 euxfr2dc 2988 sbcth 3042 sbcth2 3117 ssun3 3369 ssun4 3370 ralf0 3594 exmidexmid 4279 rext 4300 exss 4312 uniopel 4342 onsucelsucexmid 4621 suc11g 4648 eunex 4652 ordsoexmid 4653 tfisi 4678 finds1 4693 omsinds 4713 relop 4871 dmrnssfld 4986 iss 5050 relcoi1 5259 nfunv 5350 funimass2 5398 fvssunirng 5641 fvmptg 5709 oprabidlem 6031 elovmpo 6203 tfrlem1 6452 oaword1 6615 0domg 6994 1ndom2 7022 diffifi 7052 exmidpw 7066 djulclb 7218 0ct 7270 iftrueb01 7404 nlt1pig 7524 dmaddpq 7562 dmmulpq 7563 archnqq 7600 prarloclemarch2 7602 prarloclemlt 7676 cnegex 8320 nnge1 9129 zneo 9544 fsum2d 11941 fsumabs 11971 fsumiun 11983 fprod2d 12129 efne0 12184 nn0o1gt2 12411 ennnfonelemex 12980 qtopbasss 15189 ivthdichlem 15319 dvmptfsum 15393 reeff1o 15441 coseq0negpitopi 15504 cos02pilt1 15519 logltb 15542 gausslemma2dlem0i 15730 2lgs 15777 bdop 16196 bj-nntrans 16272 |
| Copyright terms: Public domain | W3C validator |