| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpi | GIF version | ||
| Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
| Ref | Expression |
|---|---|
| mpi.1 | ⊢ 𝜓 |
| mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mpi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpi.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 624 simplimdc 862 mp3an3 1339 3impexpbicom 1458 mpisyl 1466 equcomi 1727 equsex 1751 equsexd 1752 spimt 1759 spimeh 1762 equvini 1781 equveli 1782 sbcof2 1833 dveeq2 1838 ax11v2 1843 ax16i 1881 pm13.183 2911 euxfr2dc 2958 sbcth 3012 sbcth2 3086 ssun3 3338 ssun4 3339 ralf0 3563 exmidexmid 4240 rext 4259 exss 4271 uniopel 4301 onsucelsucexmid 4578 suc11g 4605 eunex 4609 ordsoexmid 4610 tfisi 4635 finds1 4650 omsinds 4670 relop 4828 dmrnssfld 4941 iss 5005 relcoi1 5214 nfunv 5304 funimass2 5352 fvssunirng 5591 fvmptg 5655 oprabidlem 5975 elovmpo 6145 tfrlem1 6394 oaword1 6557 0domg 6934 diffifi 6991 exmidpw 7005 djulclb 7157 0ct 7209 nlt1pig 7454 dmaddpq 7492 dmmulpq 7493 archnqq 7530 prarloclemarch2 7532 prarloclemlt 7606 cnegex 8250 nnge1 9059 zneo 9474 fsum2d 11746 fsumabs 11776 fsumiun 11788 fprod2d 11934 efne0 11989 nn0o1gt2 12216 ennnfonelemex 12785 qtopbasss 14993 ivthdichlem 15123 dvmptfsum 15197 reeff1o 15245 coseq0negpitopi 15308 cos02pilt1 15323 logltb 15346 gausslemma2dlem0i 15534 2lgs 15581 bdop 15811 bj-nntrans 15887 |
| Copyright terms: Public domain | W3C validator |