![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | GIF version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 | ⊢ 𝜓 |
mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mpi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 623 simplimdc 860 mp3an3 1326 3impexpbicom 1438 mpisyl 1446 equcomi 1704 equsex 1728 equsexd 1729 spimt 1736 spimeh 1739 equvini 1758 equveli 1759 sbcof2 1810 dveeq2 1815 ax11v2 1820 ax16i 1858 pm13.183 2875 euxfr2dc 2922 sbcth 2976 sbcth2 3050 ssun3 3300 ssun4 3301 ralf0 3526 exmidexmid 4196 rext 4215 exss 4227 uniopel 4256 onsucelsucexmid 4529 suc11g 4556 eunex 4560 ordsoexmid 4561 tfisi 4586 finds1 4601 omsinds 4621 relop 4777 dmrnssfld 4890 iss 4953 relcoi1 5160 nfunv 5249 funimass2 5294 fvssunirng 5530 fvmptg 5592 oprabidlem 5905 fovcl 5979 elovmpo 6071 tfrlem1 6308 oaword1 6471 0domg 6836 diffifi 6893 exmidpw 6907 djulclb 7053 0ct 7105 nlt1pig 7339 dmaddpq 7377 dmmulpq 7378 archnqq 7415 prarloclemarch2 7417 prarloclemlt 7491 cnegex 8134 nnge1 8941 zneo 9353 fsum2d 11442 fsumabs 11472 fsumiun 11484 fprod2d 11630 efne0 11685 nn0o1gt2 11909 ennnfonelemex 12414 qtopbasss 13991 reeff1o 14164 coseq0negpitopi 14227 cos02pilt1 14242 logltb 14265 bdop 14597 bj-nntrans 14673 |
Copyright terms: Public domain | W3C validator |