Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpi | GIF version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 | ⊢ 𝜓 |
mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mpi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 429 pm2.24i 613 simplimdc 846 mp3an3 1308 3impexpbicom 1418 mpisyl 1426 equcomi 1684 equsex 1708 equsexd 1709 spimt 1716 spimeh 1719 equvini 1738 equveli 1739 sbcof2 1790 dveeq2 1795 ax11v2 1800 ax16i 1838 pm13.183 2850 euxfr2dc 2897 sbcth 2950 sbcth2 3024 ssun3 3272 ssun4 3273 ralf0 3497 exmidexmid 4157 rext 4175 exss 4187 uniopel 4216 onsucelsucexmid 4488 suc11g 4515 eunex 4519 ordsoexmid 4520 tfisi 4545 finds1 4560 omsinds 4580 relop 4735 dmrnssfld 4848 iss 4911 relcoi1 5116 nfunv 5202 funimass2 5247 fvssunirng 5482 fvmptg 5543 oprabidlem 5849 fovcl 5923 elovmpo 6018 tfrlem1 6252 oaword1 6415 0domg 6779 diffifi 6836 exmidpw 6850 djulclb 6993 0ct 7045 nlt1pig 7255 dmaddpq 7293 dmmulpq 7294 archnqq 7331 prarloclemarch2 7333 prarloclemlt 7407 cnegex 8047 nnge1 8850 zneo 9259 fsum2d 11325 fsumabs 11355 fsumiun 11367 fprod2d 11513 efne0 11568 nn0o1gt2 11788 ennnfonelemex 12126 qtopbasss 12892 reeff1o 13065 coseq0negpitopi 13128 cos02pilt1 13143 logltb 13166 bdop 13421 bj-nntrans 13497 |
Copyright terms: Public domain | W3C validator |