Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpi | GIF version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 | ⊢ 𝜓 |
mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mpi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 429 pm2.24i 613 simplimdc 850 mp3an3 1316 3impexpbicom 1426 mpisyl 1434 equcomi 1692 equsex 1716 equsexd 1717 spimt 1724 spimeh 1727 equvini 1746 equveli 1747 sbcof2 1798 dveeq2 1803 ax11v2 1808 ax16i 1846 pm13.183 2864 euxfr2dc 2911 sbcth 2964 sbcth2 3038 ssun3 3287 ssun4 3288 ralf0 3512 exmidexmid 4175 rext 4193 exss 4205 uniopel 4234 onsucelsucexmid 4507 suc11g 4534 eunex 4538 ordsoexmid 4539 tfisi 4564 finds1 4579 omsinds 4599 relop 4754 dmrnssfld 4867 iss 4930 relcoi1 5135 nfunv 5221 funimass2 5266 fvssunirng 5501 fvmptg 5562 oprabidlem 5873 fovcl 5947 elovmpo 6039 tfrlem1 6276 oaword1 6439 0domg 6803 diffifi 6860 exmidpw 6874 djulclb 7020 0ct 7072 nlt1pig 7282 dmaddpq 7320 dmmulpq 7321 archnqq 7358 prarloclemarch2 7360 prarloclemlt 7434 cnegex 8076 nnge1 8880 zneo 9292 fsum2d 11376 fsumabs 11406 fsumiun 11418 fprod2d 11564 efne0 11619 nn0o1gt2 11842 ennnfonelemex 12347 qtopbasss 13171 reeff1o 13344 coseq0negpitopi 13407 cos02pilt1 13422 logltb 13445 bdop 13767 bj-nntrans 13843 |
Copyright terms: Public domain | W3C validator |