| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpi | GIF version | ||
| Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
| Ref | Expression |
|---|---|
| mpi.1 | ⊢ 𝜓 |
| mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mpi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpi.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 624 simplimdc 861 mp3an3 1337 3impexpbicom 1449 mpisyl 1457 equcomi 1718 equsex 1742 equsexd 1743 spimt 1750 spimeh 1753 equvini 1772 equveli 1773 sbcof2 1824 dveeq2 1829 ax11v2 1834 ax16i 1872 pm13.183 2902 euxfr2dc 2949 sbcth 3003 sbcth2 3077 ssun3 3329 ssun4 3330 ralf0 3554 exmidexmid 4230 rext 4249 exss 4261 uniopel 4290 onsucelsucexmid 4567 suc11g 4594 eunex 4598 ordsoexmid 4599 tfisi 4624 finds1 4639 omsinds 4659 relop 4817 dmrnssfld 4930 iss 4993 relcoi1 5202 nfunv 5292 funimass2 5337 fvssunirng 5576 fvmptg 5640 oprabidlem 5956 elovmpo 6126 tfrlem1 6375 oaword1 6538 0domg 6907 diffifi 6964 exmidpw 6978 djulclb 7130 0ct 7182 nlt1pig 7427 dmaddpq 7465 dmmulpq 7466 archnqq 7503 prarloclemarch2 7505 prarloclemlt 7579 cnegex 8223 nnge1 9032 zneo 9446 fsum2d 11619 fsumabs 11649 fsumiun 11661 fprod2d 11807 efne0 11862 nn0o1gt2 12089 ennnfonelemex 12658 qtopbasss 14843 ivthdichlem 14973 dvmptfsum 15047 reeff1o 15095 coseq0negpitopi 15158 cos02pilt1 15173 logltb 15196 gausslemma2dlem0i 15384 2lgs 15431 bdop 15607 bj-nntrans 15683 |
| Copyright terms: Public domain | W3C validator |