Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpani | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 426 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mp2ani 429 mulgt1 8758 recgt1i 8793 recreclt 8795 nngt0 8882 nnrecgt0 8895 elnnnn0c 9159 elnnz1 9214 recnz 9284 uz3m2nn 9511 ledivge1le 9662 expubnd 10512 expnbnd 10578 expnlbnd 10579 sin02gt0 11704 oddge22np1 11818 dvdsnprmd 12057 reeff1olem 13332 sinq12gt0 13391 logdivlti 13442 |
Copyright terms: Public domain | W3C validator |