| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpani | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 429 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mp2ani 432 mulgt1 9018 recgt1i 9053 recreclt 9055 nngt0 9143 nnrecgt0 9156 elnnnn0c 9422 elnnz1 9477 recnz 9548 uz3m2nn 9776 ledivge1le 9930 expubnd 10826 expnbnd 10893 expnlbnd 10894 sin02gt0 12283 oddge22np1 12400 dvdsnprmd 12655 reeff1olem 15453 sinq12gt0 15512 logdivlti 15563 gausslemma2dlem4 15751 |
| Copyright terms: Public domain | W3C validator |