ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani GIF version

Theorem mpani 430
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1 𝜓
mpani.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpani (𝜑 → (𝜒𝜃))

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 mpani.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpand 429 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mp2ani  432  mulgt1  8890  recgt1i  8925  recreclt  8927  nngt0  9015  nnrecgt0  9028  elnnnn0c  9294  elnnz1  9349  recnz  9419  uz3m2nn  9647  ledivge1le  9801  expubnd  10688  expnbnd  10755  expnlbnd  10756  sin02gt0  11929  oddge22np1  12046  dvdsnprmd  12293  reeff1olem  15007  sinq12gt0  15066  logdivlti  15117  gausslemma2dlem4  15305
  Copyright terms: Public domain W3C validator