| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpani | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 429 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mp2ani 432 mulgt1 8998 recgt1i 9033 recreclt 9035 nngt0 9123 nnrecgt0 9136 elnnnn0c 9402 elnnz1 9457 recnz 9528 uz3m2nn 9756 ledivge1le 9910 expubnd 10805 expnbnd 10872 expnlbnd 10873 sin02gt0 12261 oddge22np1 12378 dvdsnprmd 12633 reeff1olem 15430 sinq12gt0 15489 logdivlti 15540 gausslemma2dlem4 15728 |
| Copyright terms: Public domain | W3C validator |