| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpani | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 429 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mp2ani 432 mulgt1 8890 recgt1i 8925 recreclt 8927 nngt0 9015 nnrecgt0 9028 elnnnn0c 9294 elnnz1 9349 recnz 9419 uz3m2nn 9647 ledivge1le 9801 expubnd 10688 expnbnd 10755 expnlbnd 10756 sin02gt0 11929 oddge22np1 12046 dvdsnprmd 12293 reeff1olem 15007 sinq12gt0 15066 logdivlti 15117 gausslemma2dlem4 15305 |
| Copyright terms: Public domain | W3C validator |