Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpani | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 427 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mp2ani 430 mulgt1 8766 recgt1i 8801 recreclt 8803 nngt0 8890 nnrecgt0 8903 elnnnn0c 9167 elnnz1 9222 recnz 9292 uz3m2nn 9519 ledivge1le 9670 expubnd 10520 expnbnd 10586 expnlbnd 10587 sin02gt0 11713 oddge22np1 11827 dvdsnprmd 12066 reeff1olem 13445 sinq12gt0 13504 logdivlti 13555 |
Copyright terms: Public domain | W3C validator |