ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani GIF version

Theorem mpani 430
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1 𝜓
mpani.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpani (𝜑 → (𝜒𝜃))

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 mpani.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpand 429 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mp2ani  432  mulgt1  8909  recgt1i  8944  recreclt  8946  nngt0  9034  nnrecgt0  9047  elnnnn0c  9313  elnnz1  9368  recnz  9438  uz3m2nn  9666  ledivge1le  9820  expubnd  10707  expnbnd  10774  expnlbnd  10775  sin02gt0  11948  oddge22np1  12065  dvdsnprmd  12320  reeff1olem  15115  sinq12gt0  15174  logdivlti  15225  gausslemma2dlem4  15413
  Copyright terms: Public domain W3C validator