ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani GIF version

Theorem mpani 430
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1 𝜓
mpani.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpani (𝜑 → (𝜒𝜃))

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 mpani.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpand 429 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mp2ani  432  mulgt1  8998  recgt1i  9033  recreclt  9035  nngt0  9123  nnrecgt0  9136  elnnnn0c  9402  elnnz1  9457  recnz  9528  uz3m2nn  9756  ledivge1le  9910  expubnd  10805  expnbnd  10872  expnlbnd  10873  sin02gt0  12261  oddge22np1  12378  dvdsnprmd  12633  reeff1olem  15430  sinq12gt0  15489  logdivlti  15540  gausslemma2dlem4  15728
  Copyright terms: Public domain W3C validator