ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani GIF version

Theorem mpani 427
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1 𝜓
mpani.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpani (𝜑 → (𝜒𝜃))

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 mpani.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpand 426 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mp2ani  429  mulgt1  8758  recgt1i  8793  recreclt  8795  nngt0  8882  nnrecgt0  8895  elnnnn0c  9159  elnnz1  9214  recnz  9284  uz3m2nn  9511  ledivge1le  9662  expubnd  10512  expnbnd  10578  expnlbnd  10579  sin02gt0  11704  oddge22np1  11818  dvdsnprmd  12057  reeff1olem  13332  sinq12gt0  13391  logdivlti  13442
  Copyright terms: Public domain W3C validator