| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addccncf | GIF version | ||
| Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| addccncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) |
| Ref | Expression |
|---|---|
| addccncf | ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3224 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | addcl 8092 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) | |
| 3 | 2 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) |
| 4 | addccncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) | |
| 5 | 3, 4 | fmptd 5762 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ) |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
| 8 | oveq1 5981 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴)) | |
| 9 | simprll 537 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ) | |
| 10 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ) | |
| 11 | 9, 10 | addcld 8134 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ) |
| 12 | 4, 8, 9, 11 | fvmptd3 5701 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑦) = (𝑦 + 𝐴)) |
| 13 | oveq1 5981 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴)) | |
| 14 | simprlr 538 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ) | |
| 15 | 14, 10 | addcld 8134 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ) |
| 16 | 4, 13, 14, 15 | fvmptd3 5701 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑧) = (𝑧 + 𝐴)) |
| 17 | 12, 16 | oveq12d 5992 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴))) |
| 18 | 9, 14, 10 | pnpcan2d 8463 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦 − 𝑧)) |
| 19 | 17, 18 | eqtrd 2242 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = (𝑦 − 𝑧)) |
| 20 | 19 | fveq2d 5607 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
| 21 | 20 | breq1d 4072 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
| 22 | 21 | exbiri 382 | . . 3 ⊢ (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤))) |
| 23 | 5, 7, 22 | elcncf1di 15218 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ))) |
| 24 | 1, 1, 23 | mp2ani 432 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 class class class wbr 4062 ↦ cmpt 4124 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 + caddc 7970 < clt 8149 − cmin 8285 ℝ+crp 9817 abscabs 11474 –cn→ccncf 15209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-map 6767 df-sub 8287 df-cncf 15210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |