Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf GIF version

 Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))
Assertion
Ref Expression
addccncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3121 . 2 ℂ ⊆ ℂ
2 addcl 7768 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ)
32ancoms 266 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ)
4 addccncf.1 . . . 4 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))
53, 4fmptd 5581 . . 3 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
6 simpr 109 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
76a1i 9 . . 3 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+))
8 oveq1 5788 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴))
9 simprll 527 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ)
10 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ)
119, 10addcld 7808 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ)
124, 8, 9, 11fvmptd3 5521 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹𝑦) = (𝑦 + 𝐴))
13 oveq1 5788 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴))
14 simprlr 528 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ)
1514, 10addcld 7808 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ)
164, 13, 14, 15fvmptd3 5521 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹𝑧) = (𝑧 + 𝐴))
1712, 16oveq12d 5799 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹𝑦) − (𝐹𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴)))
189, 14, 10pnpcan2d 8134 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦𝑧))
1917, 18eqtrd 2173 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹𝑦) − (𝐹𝑧)) = (𝑦𝑧))
2019fveq2d 5432 . . . . 5 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹𝑦) − (𝐹𝑧))) = (abs‘(𝑦𝑧)))
2120breq1d 3946 . . . 4 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑤 ↔ (abs‘(𝑦𝑧)) < 𝑤))
2221exbiri 380 . . 3 (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦𝑧)) < 𝑤 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑤)))
235, 7, 22elcncf1di 12772 . 2 (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ)))
241, 1, 23mp2ani 429 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481   ⊆ wss 3075   class class class wbr 3936   ↦ cmpt 3996  ‘cfv 5130  (class class class)co 5781  ℂcc 7641   + caddc 7646   < clt 7823   − cmin 7956  ℝ+crp 9469  abscabs 10800  –cn→ccncf 12763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551  df-sub 7958  df-cncf 12764 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator