Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addccncf | GIF version |
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
addccncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) |
Ref | Expression |
---|---|
addccncf | ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | addcl 7899 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) | |
3 | 2 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) |
4 | addccncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) | |
5 | 3, 4 | fmptd 5650 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ) |
6 | simpr 109 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
8 | oveq1 5860 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴)) | |
9 | simprll 532 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ) | |
10 | simpl 108 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ) | |
11 | 9, 10 | addcld 7939 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ) |
12 | 4, 8, 9, 11 | fvmptd3 5589 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑦) = (𝑦 + 𝐴)) |
13 | oveq1 5860 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴)) | |
14 | simprlr 533 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ) | |
15 | 14, 10 | addcld 7939 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ) |
16 | 4, 13, 14, 15 | fvmptd3 5589 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑧) = (𝑧 + 𝐴)) |
17 | 12, 16 | oveq12d 5871 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴))) |
18 | 9, 14, 10 | pnpcan2d 8268 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦 − 𝑧)) |
19 | 17, 18 | eqtrd 2203 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = (𝑦 − 𝑧)) |
20 | 19 | fveq2d 5500 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
21 | 20 | breq1d 3999 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
22 | 21 | exbiri 380 | . . 3 ⊢ (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤))) |
23 | 5, 7, 22 | elcncf1di 13360 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ))) |
24 | 1, 1, 23 | mp2ani 430 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3989 ↦ cmpt 4050 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 + caddc 7777 < clt 7954 − cmin 8090 ℝ+crp 9610 abscabs 10961 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-sub 8092 df-cncf 13352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |