ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf GIF version

Theorem addccncf 14754
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))
Assertion
Ref Expression
addccncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem addccncf
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3199 . 2 ℂ ⊆ ℂ
2 addcl 7997 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ)
32ancoms 268 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ)
4 addccncf.1 . . . 4 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))
53, 4fmptd 5712 . . 3 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
6 simpr 110 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
76a1i 9 . . 3 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+))
8 oveq1 5925 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴))
9 simprll 537 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ)
10 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ)
119, 10addcld 8039 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ)
124, 8, 9, 11fvmptd3 5651 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹𝑦) = (𝑦 + 𝐴))
13 oveq1 5925 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴))
14 simprlr 538 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ)
1514, 10addcld 8039 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ)
164, 13, 14, 15fvmptd3 5651 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹𝑧) = (𝑧 + 𝐴))
1712, 16oveq12d 5936 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹𝑦) − (𝐹𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴)))
189, 14, 10pnpcan2d 8368 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦𝑧))
1917, 18eqtrd 2226 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹𝑦) − (𝐹𝑧)) = (𝑦𝑧))
2019fveq2d 5558 . . . . 5 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹𝑦) − (𝐹𝑧))) = (abs‘(𝑦𝑧)))
2120breq1d 4039 . . . 4 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑤 ↔ (abs‘(𝑦𝑧)) < 𝑤))
2221exbiri 382 . . 3 (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦𝑧)) < 𝑤 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑤)))
235, 7, 22elcncf1di 14734 . 2 (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ)))
241, 1, 23mp2ani 432 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3153   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  cc 7870   + caddc 7875   < clt 8054  cmin 8190  +crp 9719  abscabs 11141  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-sub 8192  df-cncf 14726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator