![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addccncf | GIF version |
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
addccncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) |
Ref | Expression |
---|---|
addccncf | ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3067 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | addcl 7617 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) | |
3 | 2 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) |
4 | addccncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) | |
5 | 3, 4 | fmptd 5506 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ) |
6 | simpr 109 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
8 | oveq1 5713 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴)) | |
9 | simprll 507 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ) | |
10 | simpl 108 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ) | |
11 | 9, 10 | addcld 7657 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ) |
12 | 4, 8, 9, 11 | fvmptd3 5446 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑦) = (𝑦 + 𝐴)) |
13 | oveq1 5713 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴)) | |
14 | simprlr 508 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ) | |
15 | 14, 10 | addcld 7657 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ) |
16 | 4, 13, 14, 15 | fvmptd3 5446 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑧) = (𝑧 + 𝐴)) |
17 | 12, 16 | oveq12d 5724 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴))) |
18 | 9, 14, 10 | pnpcan2d 7982 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦 − 𝑧)) |
19 | 17, 18 | eqtrd 2132 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = (𝑦 − 𝑧)) |
20 | 19 | fveq2d 5357 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
21 | 20 | breq1d 3885 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
22 | 21 | exbiri 377 | . . 3 ⊢ (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤))) |
23 | 5, 7, 22 | elcncf1di 12479 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ))) |
24 | 1, 1, 23 | mp2ani 426 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 ⊆ wss 3021 class class class wbr 3875 ↦ cmpt 3929 ‘cfv 5059 (class class class)co 5706 ℂcc 7498 + caddc 7503 < clt 7672 − cmin 7804 ℝ+crp 9291 abscabs 10609 –cn→ccncf 12470 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-map 6474 df-sub 7806 df-cncf 12471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |