| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addccncf | GIF version | ||
| Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| addccncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) |
| Ref | Expression |
|---|---|
| addccncf | ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3214 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | addcl 8057 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) | |
| 3 | 2 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) |
| 4 | addccncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) | |
| 5 | 3, 4 | fmptd 5741 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ) |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
| 8 | oveq1 5958 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴)) | |
| 9 | simprll 537 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ) | |
| 10 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ) | |
| 11 | 9, 10 | addcld 8099 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ) |
| 12 | 4, 8, 9, 11 | fvmptd3 5680 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑦) = (𝑦 + 𝐴)) |
| 13 | oveq1 5958 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴)) | |
| 14 | simprlr 538 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ) | |
| 15 | 14, 10 | addcld 8099 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ) |
| 16 | 4, 13, 14, 15 | fvmptd3 5680 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑧) = (𝑧 + 𝐴)) |
| 17 | 12, 16 | oveq12d 5969 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴))) |
| 18 | 9, 14, 10 | pnpcan2d 8428 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦 − 𝑧)) |
| 19 | 17, 18 | eqtrd 2239 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = (𝑦 − 𝑧)) |
| 20 | 19 | fveq2d 5587 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
| 21 | 20 | breq1d 4057 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
| 22 | 21 | exbiri 382 | . . 3 ⊢ (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤))) |
| 23 | 5, 7, 22 | elcncf1di 15095 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ))) |
| 24 | 1, 1, 23 | mp2ani 432 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 class class class wbr 4047 ↦ cmpt 4109 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 + caddc 7935 < clt 8114 − cmin 8250 ℝ+crp 9782 abscabs 11352 –cn→ccncf 15086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-map 6744 df-sub 8252 df-cncf 15087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |