Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addccncf | GIF version |
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
addccncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) |
Ref | Expression |
---|---|
addccncf | ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3173 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | addcl 7911 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) | |
3 | 2 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ) |
4 | addccncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) | |
5 | 3, 4 | fmptd 5662 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ) |
6 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
8 | oveq1 5872 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴)) | |
9 | simprll 537 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ) | |
10 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ) | |
11 | 9, 10 | addcld 7951 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ) |
12 | 4, 8, 9, 11 | fvmptd3 5601 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑦) = (𝑦 + 𝐴)) |
13 | oveq1 5872 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴)) | |
14 | simprlr 538 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ) | |
15 | 14, 10 | addcld 7951 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ) |
16 | 4, 13, 14, 15 | fvmptd3 5601 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹‘𝑧) = (𝑧 + 𝐴)) |
17 | 12, 16 | oveq12d 5883 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴))) |
18 | 9, 14, 10 | pnpcan2d 8280 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦 − 𝑧)) |
19 | 17, 18 | eqtrd 2208 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹‘𝑦) − (𝐹‘𝑧)) = (𝑦 − 𝑧)) |
20 | 19 | fveq2d 5511 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
21 | 20 | breq1d 4008 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
22 | 21 | exbiri 382 | . . 3 ⊢ (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑧))) < 𝑤))) |
23 | 5, 7, 22 | elcncf1di 13635 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ))) |
24 | 1, 1, 23 | mp2ani 432 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 class class class wbr 3998 ↦ cmpt 4059 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 + caddc 7789 < clt 7966 − cmin 8102 ℝ+crp 9622 abscabs 10972 –cn→ccncf 13626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-map 6640 df-sub 8104 df-cncf 13627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |