ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf GIF version

Theorem addccncf 13655
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))
Assertion
Ref Expression
addccncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem addccncf
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3173 . 2 ℂ ⊆ ℂ
2 addcl 7911 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ)
32ancoms 268 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝐴) ∈ ℂ)
4 addccncf.1 . . . 4 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))
53, 4fmptd 5662 . . 3 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
6 simpr 110 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
76a1i 9 . . 3 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+))
8 oveq1 5872 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 𝐴) = (𝑦 + 𝐴))
9 simprll 537 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ ℂ)
10 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝐴 ∈ ℂ)
119, 10addcld 7951 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑦 + 𝐴) ∈ ℂ)
124, 8, 9, 11fvmptd3 5601 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹𝑦) = (𝑦 + 𝐴))
13 oveq1 5872 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 + 𝐴) = (𝑧 + 𝐴))
14 simprlr 538 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ ℂ)
1514, 10addcld 7951 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝑧 + 𝐴) ∈ ℂ)
164, 13, 14, 15fvmptd3 5601 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (𝐹𝑧) = (𝑧 + 𝐴))
1712, 16oveq12d 5883 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹𝑦) − (𝐹𝑧)) = ((𝑦 + 𝐴) − (𝑧 + 𝐴)))
189, 14, 10pnpcan2d 8280 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝑦 + 𝐴) − (𝑧 + 𝐴)) = (𝑦𝑧))
1917, 18eqtrd 2208 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((𝐹𝑦) − (𝐹𝑧)) = (𝑦𝑧))
2019fveq2d 5511 . . . . 5 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → (abs‘((𝐹𝑦) − (𝐹𝑧))) = (abs‘(𝑦𝑧)))
2120breq1d 4008 . . . 4 ((𝐴 ∈ ℂ ∧ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+)) → ((abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑤 ↔ (abs‘(𝑦𝑧)) < 𝑤))
2221exbiri 382 . . 3 (𝐴 ∈ ℂ → (((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦𝑧)) < 𝑤 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑤)))
235, 7, 22elcncf1di 13635 . 2 (𝐴 ∈ ℂ → ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (ℂ–cn→ℂ)))
241, 1, 23mp2ani 432 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wss 3127   class class class wbr 3998  cmpt 4059  cfv 5208  (class class class)co 5865  cc 7784   + caddc 7789   < clt 7966  cmin 8102  +crp 9622  abscabs 10972  cnccncf 13626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-map 6640  df-sub 8104  df-cncf 13627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator