ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facavg GIF version

Theorem facavg 10492
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 9012 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
21nn0zd 9171 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
3 2nn 8881 . . . . . 6 2 ∈ ℕ
4 znq 9416 . . . . . 6 (((𝑀 + 𝑁) ∈ ℤ ∧ 2 ∈ ℕ) → ((𝑀 + 𝑁) / 2) ∈ ℚ)
52, 3, 4sylancl 409 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℚ)
6 flqle 10051 . . . . 5 (((𝑀 + 𝑁) / 2) ∈ ℚ → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
75, 6syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
85flqcld 10050 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℤ)
98zred 9173 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
10 nn0readdcl 9036 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
1110rehalfcld 8966 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℝ)
12 nn0re 8986 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1312adantr 274 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
14 letr 7847 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
159, 11, 13, 14syl3anc 1216 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
167, 15mpand 425 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
171nn0ge0d 9033 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ (𝑀 + 𝑁))
18 halfnneg2 8952 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℝ → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
1910, 18syl 14 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
2017, 19mpbid 146 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ ((𝑀 + 𝑁) / 2))
21 flqge0nn0 10066 . . . . 5 ((((𝑀 + 𝑁) / 2) ∈ ℚ ∧ 0 ≤ ((𝑀 + 𝑁) / 2)) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
225, 20, 21syl2anc 408 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
23 simpl 108 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
24 facwordi 10486 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑀 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))
25243exp 1180 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))))
2622, 23, 25sylc 62 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀)))
27 faccl 10481 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
2827nncnd 8734 . . . . . . 7 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
2928mulid1d 7783 . . . . . 6 (𝑀 ∈ ℕ0 → ((!‘𝑀) · 1) = (!‘𝑀))
3029adantr 274 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) = (!‘𝑀))
31 faccl 10481 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3231nnred 8733 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
3332adantl 275 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
3427nnred 8733 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
3527nnnn0d 9030 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ0)
3635nn0ge0d 9033 . . . . . . . 8 (𝑀 ∈ ℕ0 → 0 ≤ (!‘𝑀))
3734, 36jca 304 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3837adantr 274 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3931nnge1d 8763 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (!‘𝑁))
4039adantl 275 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑁))
41 1re 7765 . . . . . . 7 1 ∈ ℝ
42 lemul2a 8617 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4341, 42mp3anl1 1309 . . . . . 6 ((((!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4433, 38, 40, 43syl21anc 1215 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4530, 44eqbrtrrd 3952 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁)))
46 faccl 10481 . . . . . . 7 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4722, 46syl 14 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4847nnred 8733 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ)
4934adantr 274 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
50 remulcl 7748 . . . . . 6 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
5134, 32, 50syl2an 287 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
52 letr 7847 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5348, 49, 51, 52syl3anc 1216 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5445, 53mpan2d 424 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5516, 26, 543syld 57 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
56 nn0re 8986 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5756adantl 275 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
58 letr 7847 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
599, 11, 57, 58syl3anc 1216 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
607, 59mpand 425 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
61 simpr 109 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
62 facwordi 10486 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))
63623exp 1180 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))))
6422, 61, 63sylc 62 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁)))
6531nncnd 8734 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
6665mulid2d 7784 . . . . . 6 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
6766adantl 275 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) = (!‘𝑁))
6831nnnn0d 9030 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
6968nn0ge0d 9033 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
7032, 69jca 304 . . . . . . 7 (𝑁 ∈ ℕ0 → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
7170adantl 275 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
7227nnge1d 8763 . . . . . . 7 (𝑀 ∈ ℕ0 → 1 ≤ (!‘𝑀))
7372adantr 274 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑀))
74 lemul1a 8616 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7541, 74mp3anl1 1309 . . . . . 6 ((((!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7649, 71, 73, 75syl21anc 1215 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7767, 76eqbrtrrd 3952 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁)))
78 letr 7847 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7948, 33, 51, 78syl3anc 1216 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8077, 79mpan2d 424 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8160, 64, 803syld 57 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8223nn0zd 9171 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
83 zq 9418 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
8482, 83syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℚ)
8561nn0zd 9171 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
86 zq 9418 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
8785, 86syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℚ)
88 qavgle 10036 . . 3 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
8984, 87, 88syl2anc 408 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
9055, 81, 89mpjaod 707 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  cle 7801   / cdiv 8432  cn 8720  2c2 8771  0cn0 8977  cz 9054  cq 9411  cfl 10041  !cfa 10471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fl 10043  df-seqfrec 10219  df-fac 10472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator