ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facavg GIF version

Theorem facavg 10913
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 9350 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
21nn0zd 9513 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
3 2nn 9218 . . . . . 6 2 ∈ ℕ
4 znq 9765 . . . . . 6 (((𝑀 + 𝑁) ∈ ℤ ∧ 2 ∈ ℕ) → ((𝑀 + 𝑁) / 2) ∈ ℚ)
52, 3, 4sylancl 413 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℚ)
6 flqle 10443 . . . . 5 (((𝑀 + 𝑁) / 2) ∈ ℚ → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
75, 6syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
85flqcld 10442 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℤ)
98zred 9515 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
10 nn0readdcl 9374 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
1110rehalfcld 9304 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℝ)
12 nn0re 9324 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1312adantr 276 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
14 letr 8175 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
159, 11, 13, 14syl3anc 1250 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
167, 15mpand 429 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
171nn0ge0d 9371 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ (𝑀 + 𝑁))
18 halfnneg2 9289 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℝ → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
1910, 18syl 14 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
2017, 19mpbid 147 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ ((𝑀 + 𝑁) / 2))
21 flqge0nn0 10458 . . . . 5 ((((𝑀 + 𝑁) / 2) ∈ ℚ ∧ 0 ≤ ((𝑀 + 𝑁) / 2)) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
225, 20, 21syl2anc 411 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
23 simpl 109 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
24 facwordi 10907 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑀 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))
25243exp 1205 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))))
2622, 23, 25sylc 62 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀)))
27 faccl 10902 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
2827nncnd 9070 . . . . . . 7 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
2928mulridd 8109 . . . . . 6 (𝑀 ∈ ℕ0 → ((!‘𝑀) · 1) = (!‘𝑀))
3029adantr 276 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) = (!‘𝑀))
31 faccl 10902 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3231nnred 9069 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
3332adantl 277 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
3427nnred 9069 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
3527nnnn0d 9368 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ0)
3635nn0ge0d 9371 . . . . . . . 8 (𝑀 ∈ ℕ0 → 0 ≤ (!‘𝑀))
3734, 36jca 306 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3837adantr 276 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3931nnge1d 9099 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (!‘𝑁))
4039adantl 277 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑁))
41 1re 8091 . . . . . . 7 1 ∈ ℝ
42 lemul2a 8952 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4341, 42mp3anl1 1344 . . . . . 6 ((((!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4433, 38, 40, 43syl21anc 1249 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4530, 44eqbrtrrd 4075 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁)))
46 faccl 10902 . . . . . . 7 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4722, 46syl 14 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4847nnred 9069 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ)
4934adantr 276 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
50 remulcl 8073 . . . . . 6 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
5134, 32, 50syl2an 289 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
52 letr 8175 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5348, 49, 51, 52syl3anc 1250 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5445, 53mpan2d 428 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5516, 26, 543syld 57 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
56 nn0re 9324 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5756adantl 277 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
58 letr 8175 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
599, 11, 57, 58syl3anc 1250 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
607, 59mpand 429 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
61 simpr 110 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
62 facwordi 10907 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))
63623exp 1205 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))))
6422, 61, 63sylc 62 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁)))
6531nncnd 9070 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
6665mulid2d 8111 . . . . . 6 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
6766adantl 277 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) = (!‘𝑁))
6831nnnn0d 9368 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
6968nn0ge0d 9371 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
7032, 69jca 306 . . . . . . 7 (𝑁 ∈ ℕ0 → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
7170adantl 277 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
7227nnge1d 9099 . . . . . . 7 (𝑀 ∈ ℕ0 → 1 ≤ (!‘𝑀))
7372adantr 276 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑀))
74 lemul1a 8951 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7541, 74mp3anl1 1344 . . . . . 6 ((((!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7649, 71, 73, 75syl21anc 1249 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7767, 76eqbrtrrd 4075 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁)))
78 letr 8175 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7948, 33, 51, 78syl3anc 1250 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8077, 79mpan2d 428 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8160, 64, 803syld 57 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8223nn0zd 9513 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
83 zq 9767 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
8482, 83syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℚ)
8561nn0zd 9513 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
86 zq 9767 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
8785, 86syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℚ)
88 qavgle 10423 . . 3 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
8984, 87, 88syl2anc 411 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
9055, 81, 89mpjaod 720 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cr 7944  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950  cle 8128   / cdiv 8765  cn 9056  2c2 9107  0cn0 9315  cz 9392  cq 9760  cfl 10433  !cfa 10892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fl 10435  df-seqfrec 10615  df-fac 10893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator