ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facavg GIF version

Theorem facavg 10524
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 9036 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
21nn0zd 9195 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
3 2nn 8905 . . . . . 6 2 ∈ ℕ
4 znq 9443 . . . . . 6 (((𝑀 + 𝑁) ∈ ℤ ∧ 2 ∈ ℕ) → ((𝑀 + 𝑁) / 2) ∈ ℚ)
52, 3, 4sylancl 410 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℚ)
6 flqle 10082 . . . . 5 (((𝑀 + 𝑁) / 2) ∈ ℚ → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
75, 6syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
85flqcld 10081 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℤ)
98zred 9197 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
10 nn0readdcl 9060 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
1110rehalfcld 8990 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℝ)
12 nn0re 9010 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1312adantr 274 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
14 letr 7871 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
159, 11, 13, 14syl3anc 1217 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
167, 15mpand 426 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
171nn0ge0d 9057 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ (𝑀 + 𝑁))
18 halfnneg2 8976 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℝ → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
1910, 18syl 14 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
2017, 19mpbid 146 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ ((𝑀 + 𝑁) / 2))
21 flqge0nn0 10097 . . . . 5 ((((𝑀 + 𝑁) / 2) ∈ ℚ ∧ 0 ≤ ((𝑀 + 𝑁) / 2)) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
225, 20, 21syl2anc 409 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
23 simpl 108 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
24 facwordi 10518 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑀 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))
25243exp 1181 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))))
2622, 23, 25sylc 62 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀)))
27 faccl 10513 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
2827nncnd 8758 . . . . . . 7 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
2928mulid1d 7807 . . . . . 6 (𝑀 ∈ ℕ0 → ((!‘𝑀) · 1) = (!‘𝑀))
3029adantr 274 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) = (!‘𝑀))
31 faccl 10513 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3231nnred 8757 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
3332adantl 275 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
3427nnred 8757 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
3527nnnn0d 9054 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ0)
3635nn0ge0d 9057 . . . . . . . 8 (𝑀 ∈ ℕ0 → 0 ≤ (!‘𝑀))
3734, 36jca 304 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3837adantr 274 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3931nnge1d 8787 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (!‘𝑁))
4039adantl 275 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑁))
41 1re 7789 . . . . . . 7 1 ∈ ℝ
42 lemul2a 8641 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4341, 42mp3anl1 1310 . . . . . 6 ((((!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4433, 38, 40, 43syl21anc 1216 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4530, 44eqbrtrrd 3960 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁)))
46 faccl 10513 . . . . . . 7 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4722, 46syl 14 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4847nnred 8757 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ)
4934adantr 274 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
50 remulcl 7772 . . . . . 6 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
5134, 32, 50syl2an 287 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
52 letr 7871 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5348, 49, 51, 52syl3anc 1217 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5445, 53mpan2d 425 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5516, 26, 543syld 57 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
56 nn0re 9010 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5756adantl 275 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
58 letr 7871 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
599, 11, 57, 58syl3anc 1217 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
607, 59mpand 426 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
61 simpr 109 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
62 facwordi 10518 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))
63623exp 1181 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))))
6422, 61, 63sylc 62 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁)))
6531nncnd 8758 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
6665mulid2d 7808 . . . . . 6 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
6766adantl 275 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) = (!‘𝑁))
6831nnnn0d 9054 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
6968nn0ge0d 9057 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
7032, 69jca 304 . . . . . . 7 (𝑁 ∈ ℕ0 → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
7170adantl 275 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
7227nnge1d 8787 . . . . . . 7 (𝑀 ∈ ℕ0 → 1 ≤ (!‘𝑀))
7372adantr 274 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑀))
74 lemul1a 8640 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7541, 74mp3anl1 1310 . . . . . 6 ((((!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7649, 71, 73, 75syl21anc 1216 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7767, 76eqbrtrrd 3960 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁)))
78 letr 7871 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7948, 33, 51, 78syl3anc 1217 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8077, 79mpan2d 425 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8160, 64, 803syld 57 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
8223nn0zd 9195 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
83 zq 9445 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
8482, 83syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℚ)
8561nn0zd 9195 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
86 zq 9445 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
8785, 86syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℚ)
88 qavgle 10067 . . 3 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
8984, 87, 88syl2anc 409 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
9055, 81, 89mpjaod 708 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649  cle 7825   / cdiv 8456  cn 8744  2c2 8795  0cn0 9001  cz 9078  cq 9438  cfl 10072  !cfa 10503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fl 10074  df-seqfrec 10250  df-fac 10504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator