| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domssr | GIF version | ||
| Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| domssr | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6837 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | |
| 2 | 1 | 3ad2ant3 1022 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | simp2 1000 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐵 ⊆ 𝐶) | |
| 4 | reldom 6831 | . . . . 5 ⊢ Rel ≼ | |
| 5 | 4 | brrelex1i 4717 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 6 | 5 | 3ad2ant3 1022 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ∈ V) |
| 7 | simp1 999 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ 𝑉) | |
| 8 | 3, 6, 7 | jca32 310 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉))) |
| 9 | f1ss 5486 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝑓:𝐴–1-1→𝐶) | |
| 10 | vex 2774 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 11 | f1dom4g 6843 | . . . . . . 7 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
| 12 | 10, 11 | mp3anl1 1343 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
| 13 | 12 | ancoms 268 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
| 14 | 9, 13 | sylan 283 | . . . 4 ⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
| 15 | 14 | expl 378 | . . 3 ⊢ (𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
| 16 | 15 | exlimiv 1620 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
| 17 | 2, 8, 16 | sylc 62 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 class class class wbr 4043 –1-1→wf1 5267 ≼ cdom 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-dom 6828 |
| This theorem is referenced by: rex2dom 6909 |
| Copyright terms: Public domain | W3C validator |