| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domssr | GIF version | ||
| Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| domssr | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6851 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | |
| 2 | 1 | 3ad2ant3 1023 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | simp2 1001 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐵 ⊆ 𝐶) | |
| 4 | reldom 6845 | . . . . 5 ⊢ Rel ≼ | |
| 5 | 4 | brrelex1i 4726 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 6 | 5 | 3ad2ant3 1023 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ∈ V) |
| 7 | simp1 1000 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ 𝑉) | |
| 8 | 3, 6, 7 | jca32 310 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉))) |
| 9 | f1ss 5499 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝑓:𝐴–1-1→𝐶) | |
| 10 | vex 2776 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 11 | f1dom4g 6857 | . . . . . . 7 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
| 12 | 10, 11 | mp3anl1 1344 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
| 13 | 12 | ancoms 268 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
| 14 | 9, 13 | sylan 283 | . . . 4 ⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
| 15 | 14 | expl 378 | . . 3 ⊢ (𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
| 16 | 15 | exlimiv 1622 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
| 17 | 2, 8, 16 | sylc 62 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 class class class wbr 4051 –1-1→wf1 5277 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-dom 6842 |
| This theorem is referenced by: rex2dom 6924 |
| Copyright terms: Public domain | W3C validator |