| Step | Hyp | Ref
| Expression |
| 1 | | nqpi 7462 |
. 2
⊢ (𝐴 ∈ Q →
∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q
)) |
| 2 | | 1pi 7399 |
. . . . . . 7
⊢
1o ∈ N |
| 3 | | addclpi 7411 |
. . . . . . 7
⊢ ((𝑧 ∈ N ∧
1o ∈ N) → (𝑧 +N 1o)
∈ N) |
| 4 | 2, 3 | mpan2 425 |
. . . . . 6
⊢ (𝑧 ∈ N →
(𝑧
+N 1o) ∈
N) |
| 5 | 4 | adantr 276 |
. . . . 5
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
+N 1o) ∈
N) |
| 6 | 5 | adantr 276 |
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q ) →
(𝑧
+N 1o) ∈
N) |
| 7 | | pinn 7393 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
𝑧 ∈
ω) |
| 8 | | 1onn 6587 |
. . . . . . . . . . . . . 14
⊢
1o ∈ ω |
| 9 | | nnacl 6547 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧
1o ∈ ω) → (𝑧 +o 1o) ∈
ω) |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ N →
(𝑧 +o
1o) ∈ ω) |
| 11 | 10 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧 +o
1o) ∈ ω) |
| 12 | | nnm1 6592 |
. . . . . . . . . . . 12
⊢ ((𝑧 +o 1o)
∈ ω → ((𝑧
+o 1o) ·o 1o) = (𝑧 +o
1o)) |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧 +o
1o) ·o 1o) = (𝑧 +o
1o)) |
| 14 | | elni2 7398 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ N ↔
(𝑤 ∈ ω ∧
∅ ∈ 𝑤)) |
| 15 | | nnord 4649 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ω → Ord 𝑤) |
| 16 | | ordgt0ge1 6502 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝑤 → (∅ ∈
𝑤 ↔ 1o
⊆ 𝑤)) |
| 17 | 16 | biimpa 296 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
𝑤 ∧ ∅ ∈
𝑤) → 1o
⊆ 𝑤) |
| 18 | 15, 17 | sylan 283 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ω ∧ ∅
∈ 𝑤) →
1o ⊆ 𝑤) |
| 19 | 14, 18 | sylbi 121 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ N →
1o ⊆ 𝑤) |
| 20 | 19 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ 1o ⊆ 𝑤) |
| 21 | | pinn 7393 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ N →
𝑤 ∈
ω) |
| 22 | 21 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ 𝑤 ∈
ω) |
| 23 | | nnaword1 6580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ω ∧
1o ∈ ω) → 𝑧 ⊆ (𝑧 +o
1o)) |
| 24 | 7, 8, 23 | sylancl 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ N →
𝑧 ⊆ (𝑧 +o
1o)) |
| 25 | | elni2 7398 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ N ↔
(𝑧 ∈ ω ∧
∅ ∈ 𝑧)) |
| 26 | 25 | simprbi 275 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ N →
∅ ∈ 𝑧) |
| 27 | 24, 26 | sseldd 3185 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
∅ ∈ (𝑧
+o 1o)) |
| 28 | 27 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ∅ ∈ (𝑧
+o 1o)) |
| 29 | | nnmword 6585 |
. . . . . . . . . . . . . 14
⊢
(((1o ∈ ω ∧ 𝑤 ∈ ω ∧ (𝑧 +o 1o) ∈ ω)
∧ ∅ ∈ (𝑧
+o 1o)) → (1o ⊆ 𝑤 ↔ ((𝑧 +o 1o)
·o 1o) ⊆ ((𝑧 +o 1o)
·o 𝑤))) |
| 30 | 8, 29 | mp3anl1 1342 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ ω ∧ (𝑧 +o 1o)
∈ ω) ∧ ∅ ∈ (𝑧 +o 1o)) →
(1o ⊆ 𝑤
↔ ((𝑧 +o
1o) ·o 1o) ⊆ ((𝑧 +o 1o)
·o 𝑤))) |
| 31 | 22, 11, 28, 30 | syl21anc 1248 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (1o ⊆ 𝑤 ↔ ((𝑧 +o 1o)
·o 1o) ⊆ ((𝑧 +o 1o)
·o 𝑤))) |
| 32 | 20, 31 | mpbid 147 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧 +o
1o) ·o 1o) ⊆ ((𝑧 +o 1o)
·o 𝑤)) |
| 33 | 13, 32 | eqsstrrd 3221 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧 +o
1o) ⊆ ((𝑧
+o 1o) ·o 𝑤)) |
| 34 | | nna0 6541 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → (𝑧 +o ∅) = 𝑧) |
| 35 | | 0lt1o 6507 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ 1o |
| 36 | | nnaordi 6575 |
. . . . . . . . . . . . . . 15
⊢
((1o ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈
1o → (𝑧
+o ∅) ∈ (𝑧 +o
1o))) |
| 37 | 8, 36 | mpan 424 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ω → (∅
∈ 1o → (𝑧 +o ∅) ∈ (𝑧 +o
1o))) |
| 38 | 35, 37 | mpi 15 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → (𝑧 +o ∅) ∈
(𝑧 +o
1o)) |
| 39 | 34, 38 | eqeltrrd 2274 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +o
1o)) |
| 40 | 7, 39 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ N →
𝑧 ∈ (𝑧 +o
1o)) |
| 41 | 40 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ 𝑧 ∈ (𝑧 +o
1o)) |
| 42 | 33, 41 | sseldd 3185 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ 𝑧 ∈ ((𝑧 +o 1o)
·o 𝑤)) |
| 43 | | mulclpi 7412 |
. . . . . . . . . . . 12
⊢ (((𝑧 +N
1o) ∈ N ∧ 𝑤 ∈ N) → ((𝑧 +N
1o) ·N 𝑤) ∈ N) |
| 44 | 4, 43 | sylan 283 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
+N 1o) ·N
𝑤) ∈
N) |
| 45 | | ltpiord 7403 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
((𝑧
+N 1o) ·N
𝑤) ∈ N)
→ (𝑧
<N ((𝑧 +N 1o)
·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +N 1o)
·N 𝑤))) |
| 46 | 44, 45 | syldan 282 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
<N ((𝑧 +N 1o)
·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +N 1o)
·N 𝑤))) |
| 47 | | mulpiord 7401 |
. . . . . . . . . . . . 13
⊢ (((𝑧 +N
1o) ∈ N ∧ 𝑤 ∈ N) → ((𝑧 +N
1o) ·N 𝑤) = ((𝑧 +N 1o)
·o 𝑤)) |
| 48 | 4, 47 | sylan 283 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
+N 1o) ·N
𝑤) = ((𝑧 +N 1o)
·o 𝑤)) |
| 49 | | addpiord 7400 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ N ∧
1o ∈ N) → (𝑧 +N 1o) =
(𝑧 +o
1o)) |
| 50 | 2, 49 | mpan2 425 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
(𝑧
+N 1o) = (𝑧 +o
1o)) |
| 51 | 50 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
+N 1o) = (𝑧 +o
1o)) |
| 52 | 51 | oveq1d 5940 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
+N 1o) ·o 𝑤) = ((𝑧 +o 1o)
·o 𝑤)) |
| 53 | 48, 52 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
+N 1o) ·N
𝑤) = ((𝑧 +o 1o)
·o 𝑤)) |
| 54 | 53 | eleq2d 2266 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧 ∈ ((𝑧 +N
1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +o 1o)
·o 𝑤))) |
| 55 | 46, 54 | bitrd 188 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
<N ((𝑧 +N 1o)
·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +o 1o)
·o 𝑤))) |
| 56 | 42, 55 | mpbird 167 |
. . . . . . . 8
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ 𝑧
<N ((𝑧 +N 1o)
·N 𝑤)) |
| 57 | | mulcompig 7415 |
. . . . . . . . . 10
⊢ (((𝑧 +N
1o) ∈ N ∧ 𝑤 ∈ N) → ((𝑧 +N
1o) ·N 𝑤) = (𝑤 ·N (𝑧 +N
1o))) |
| 58 | 4, 57 | sylan 283 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
+N 1o) ·N
𝑤) = (𝑤 ·N (𝑧 +N
1o))) |
| 59 | 58 | breq2d 4046 |
. . . . . . . 8
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
<N ((𝑧 +N 1o)
·N 𝑤) ↔ 𝑧 <N (𝑤
·N (𝑧 +N
1o)))) |
| 60 | 56, 59 | mpbid 147 |
. . . . . . 7
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ 𝑧
<N (𝑤 ·N (𝑧 +N
1o))) |
| 61 | 5, 2 | jctir 313 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
+N 1o) ∈ N ∧
1o ∈ N)) |
| 62 | | ordpipqqs 7458 |
. . . . . . . . 9
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ ((𝑧
+N 1o) ∈ N ∧
1o ∈ N)) → ([〈𝑧, 𝑤〉] ~Q
<Q [〈(𝑧 +N 1o),
1o〉] ~Q ↔ (𝑧 ·N
1o) <N (𝑤 ·N (𝑧 +N
1o)))) |
| 63 | 61, 62 | mpdan 421 |
. . . . . . . 8
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ([〈𝑧, 𝑤〉]
~Q <Q [〈(𝑧 +N
1o), 1o〉] ~Q ↔ (𝑧
·N 1o)
<N (𝑤 ·N (𝑧 +N
1o)))) |
| 64 | | mulidpi 7402 |
. . . . . . . . . 10
⊢ (𝑧 ∈ N →
(𝑧
·N 1o) = 𝑧) |
| 65 | 64 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
·N 1o) = 𝑧) |
| 66 | 65 | breq1d 4044 |
. . . . . . . 8
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ((𝑧
·N 1o)
<N (𝑤 ·N (𝑧 +N
1o)) ↔ 𝑧
<N (𝑤 ·N (𝑧 +N
1o)))) |
| 67 | 63, 66 | bitrd 188 |
. . . . . . 7
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ ([〈𝑧, 𝑤〉]
~Q <Q [〈(𝑧 +N
1o), 1o〉] ~Q ↔ 𝑧 <N
(𝑤
·N (𝑧 +N
1o)))) |
| 68 | 60, 67 | mpbird 167 |
. . . . . 6
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ [〈𝑧, 𝑤〉]
~Q <Q [〈(𝑧 +N
1o), 1o〉] ~Q
) |
| 69 | 68 | adantr 276 |
. . . . 5
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q ) →
[〈𝑧, 𝑤〉]
~Q <Q [〈(𝑧 +N
1o), 1o〉] ~Q
) |
| 70 | | breq1 4037 |
. . . . . 6
⊢ (𝐴 = [〈𝑧, 𝑤〉] ~Q →
(𝐴
<Q [〈(𝑧 +N 1o),
1o〉] ~Q ↔ [〈𝑧, 𝑤〉] ~Q
<Q [〈(𝑧 +N 1o),
1o〉] ~Q )) |
| 71 | 70 | adantl 277 |
. . . . 5
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q ) →
(𝐴
<Q [〈(𝑧 +N 1o),
1o〉] ~Q ↔ [〈𝑧, 𝑤〉] ~Q
<Q [〈(𝑧 +N 1o),
1o〉] ~Q )) |
| 72 | 69, 71 | mpbird 167 |
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q ) →
𝐴
<Q [〈(𝑧 +N 1o),
1o〉] ~Q ) |
| 73 | | opeq1 3809 |
. . . . . . 7
⊢ (𝑥 = (𝑧 +N 1o)
→ 〈𝑥,
1o〉 = 〈(𝑧 +N 1o),
1o〉) |
| 74 | 73 | eceq1d 6637 |
. . . . . 6
⊢ (𝑥 = (𝑧 +N 1o)
→ [〈𝑥,
1o〉] ~Q = [〈(𝑧 +N 1o),
1o〉] ~Q ) |
| 75 | 74 | breq2d 4046 |
. . . . 5
⊢ (𝑥 = (𝑧 +N 1o)
→ (𝐴
<Q [〈𝑥, 1o〉]
~Q ↔ 𝐴 <Q
[〈(𝑧
+N 1o), 1o〉]
~Q )) |
| 76 | 75 | rspcev 2868 |
. . . 4
⊢ (((𝑧 +N
1o) ∈ N ∧ 𝐴 <Q
[〈(𝑧
+N 1o), 1o〉]
~Q ) → ∃𝑥 ∈ N 𝐴 <Q [〈𝑥, 1o〉]
~Q ) |
| 77 | 6, 72, 76 | syl2anc 411 |
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q ) →
∃𝑥 ∈
N 𝐴
<Q [〈𝑥, 1o〉]
~Q ) |
| 78 | 77 | exlimivv 1911 |
. 2
⊢
(∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) →
∃𝑥 ∈
N 𝐴
<Q [〈𝑥, 1o〉]
~Q ) |
| 79 | 1, 78 | syl 14 |
1
⊢ (𝐴 ∈ Q →
∃𝑥 ∈
N 𝐴
<Q [〈𝑥, 1o〉]
~Q ) |