ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archnqq GIF version

Theorem archnqq 7358
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
archnqq (𝐴Q → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnqq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7319 . 2 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 1pi 7256 . . . . . . 7 1oN
3 addclpi 7268 . . . . . . 7 ((𝑧N ∧ 1oN) → (𝑧 +N 1o) ∈ N)
42, 3mpan2 422 . . . . . 6 (𝑧N → (𝑧 +N 1o) ∈ N)
54adantr 274 . . . . 5 ((𝑧N𝑤N) → (𝑧 +N 1o) ∈ N)
65adantr 274 . . . 4 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝑧 +N 1o) ∈ N)
7 pinn 7250 . . . . . . . . . . . . . 14 (𝑧N𝑧 ∈ ω)
8 1onn 6488 . . . . . . . . . . . . . 14 1o ∈ ω
9 nnacl 6448 . . . . . . . . . . . . . 14 ((𝑧 ∈ ω ∧ 1o ∈ ω) → (𝑧 +o 1o) ∈ ω)
107, 8, 9sylancl 410 . . . . . . . . . . . . 13 (𝑧N → (𝑧 +o 1o) ∈ ω)
1110adantr 274 . . . . . . . . . . . 12 ((𝑧N𝑤N) → (𝑧 +o 1o) ∈ ω)
12 nnm1 6492 . . . . . . . . . . . 12 ((𝑧 +o 1o) ∈ ω → ((𝑧 +o 1o) ·o 1o) = (𝑧 +o 1o))
1311, 12syl 14 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +o 1o) ·o 1o) = (𝑧 +o 1o))
14 elni2 7255 . . . . . . . . . . . . . 14 (𝑤N ↔ (𝑤 ∈ ω ∧ ∅ ∈ 𝑤))
15 nnord 4589 . . . . . . . . . . . . . . 15 (𝑤 ∈ ω → Ord 𝑤)
16 ordgt0ge1 6403 . . . . . . . . . . . . . . . 16 (Ord 𝑤 → (∅ ∈ 𝑤 ↔ 1o𝑤))
1716biimpa 294 . . . . . . . . . . . . . . 15 ((Ord 𝑤 ∧ ∅ ∈ 𝑤) → 1o𝑤)
1815, 17sylan 281 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ ∅ ∈ 𝑤) → 1o𝑤)
1914, 18sylbi 120 . . . . . . . . . . . . 13 (𝑤N → 1o𝑤)
2019adantl 275 . . . . . . . . . . . 12 ((𝑧N𝑤N) → 1o𝑤)
21 pinn 7250 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
2221adantl 275 . . . . . . . . . . . . 13 ((𝑧N𝑤N) → 𝑤 ∈ ω)
23 nnaword1 6481 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 1o ∈ ω) → 𝑧 ⊆ (𝑧 +o 1o))
247, 8, 23sylancl 410 . . . . . . . . . . . . . . 15 (𝑧N𝑧 ⊆ (𝑧 +o 1o))
25 elni2 7255 . . . . . . . . . . . . . . . 16 (𝑧N ↔ (𝑧 ∈ ω ∧ ∅ ∈ 𝑧))
2625simprbi 273 . . . . . . . . . . . . . . 15 (𝑧N → ∅ ∈ 𝑧)
2724, 26sseldd 3143 . . . . . . . . . . . . . 14 (𝑧N → ∅ ∈ (𝑧 +o 1o))
2827adantr 274 . . . . . . . . . . . . 13 ((𝑧N𝑤N) → ∅ ∈ (𝑧 +o 1o))
29 nnmword 6486 . . . . . . . . . . . . . 14 (((1o ∈ ω ∧ 𝑤 ∈ ω ∧ (𝑧 +o 1o) ∈ ω) ∧ ∅ ∈ (𝑧 +o 1o)) → (1o𝑤 ↔ ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤)))
308, 29mp3anl1 1321 . . . . . . . . . . . . 13 (((𝑤 ∈ ω ∧ (𝑧 +o 1o) ∈ ω) ∧ ∅ ∈ (𝑧 +o 1o)) → (1o𝑤 ↔ ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤)))
3122, 11, 28, 30syl21anc 1227 . . . . . . . . . . . 12 ((𝑧N𝑤N) → (1o𝑤 ↔ ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤)))
3220, 31mpbid 146 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤))
3313, 32eqsstrrd 3179 . . . . . . . . . 10 ((𝑧N𝑤N) → (𝑧 +o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤))
34 nna0 6442 . . . . . . . . . . . . 13 (𝑧 ∈ ω → (𝑧 +o ∅) = 𝑧)
35 0lt1o 6408 . . . . . . . . . . . . . 14 ∅ ∈ 1o
36 nnaordi 6476 . . . . . . . . . . . . . . 15 ((1o ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈ 1o → (𝑧 +o ∅) ∈ (𝑧 +o 1o)))
378, 36mpan 421 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → (∅ ∈ 1o → (𝑧 +o ∅) ∈ (𝑧 +o 1o)))
3835, 37mpi 15 . . . . . . . . . . . . 13 (𝑧 ∈ ω → (𝑧 +o ∅) ∈ (𝑧 +o 1o))
3934, 38eqeltrrd 2244 . . . . . . . . . . . 12 (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +o 1o))
407, 39syl 14 . . . . . . . . . . 11 (𝑧N𝑧 ∈ (𝑧 +o 1o))
4140adantr 274 . . . . . . . . . 10 ((𝑧N𝑤N) → 𝑧 ∈ (𝑧 +o 1o))
4233, 41sseldd 3143 . . . . . . . . 9 ((𝑧N𝑤N) → 𝑧 ∈ ((𝑧 +o 1o) ·o 𝑤))
43 mulclpi 7269 . . . . . . . . . . . 12 (((𝑧 +N 1o) ∈ N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) ∈ N)
444, 43sylan 281 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) ∈ N)
45 ltpiord 7260 . . . . . . . . . . 11 ((𝑧N ∧ ((𝑧 +N 1o) ·N 𝑤) ∈ N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +N 1o) ·N 𝑤)))
4644, 45syldan 280 . . . . . . . . . 10 ((𝑧N𝑤N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +N 1o) ·N 𝑤)))
47 mulpiord 7258 . . . . . . . . . . . . 13 (((𝑧 +N 1o) ∈ N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = ((𝑧 +N 1o) ·o 𝑤))
484, 47sylan 281 . . . . . . . . . . . 12 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = ((𝑧 +N 1o) ·o 𝑤))
49 addpiord 7257 . . . . . . . . . . . . . . 15 ((𝑧N ∧ 1oN) → (𝑧 +N 1o) = (𝑧 +o 1o))
502, 49mpan2 422 . . . . . . . . . . . . . 14 (𝑧N → (𝑧 +N 1o) = (𝑧 +o 1o))
5150adantr 274 . . . . . . . . . . . . 13 ((𝑧N𝑤N) → (𝑧 +N 1o) = (𝑧 +o 1o))
5251oveq1d 5857 . . . . . . . . . . . 12 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·o 𝑤) = ((𝑧 +o 1o) ·o 𝑤))
5348, 52eqtrd 2198 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = ((𝑧 +o 1o) ·o 𝑤))
5453eleq2d 2236 . . . . . . . . . 10 ((𝑧N𝑤N) → (𝑧 ∈ ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +o 1o) ·o 𝑤)))
5546, 54bitrd 187 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +o 1o) ·o 𝑤)))
5642, 55mpbird 166 . . . . . . . 8 ((𝑧N𝑤N) → 𝑧 <N ((𝑧 +N 1o) ·N 𝑤))
57 mulcompig 7272 . . . . . . . . . 10 (((𝑧 +N 1o) ∈ N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = (𝑤 ·N (𝑧 +N 1o)))
584, 57sylan 281 . . . . . . . . 9 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = (𝑤 ·N (𝑧 +N 1o)))
5958breq2d 3994 . . . . . . . 8 ((𝑧N𝑤N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 <N (𝑤 ·N (𝑧 +N 1o))))
6056, 59mpbid 146 . . . . . . 7 ((𝑧N𝑤N) → 𝑧 <N (𝑤 ·N (𝑧 +N 1o)))
615, 2jctir 311 . . . . . . . . 9 ((𝑧N𝑤N) → ((𝑧 +N 1o) ∈ N ∧ 1oN))
62 ordpipqqs 7315 . . . . . . . . 9 (((𝑧N𝑤N) ∧ ((𝑧 +N 1o) ∈ N ∧ 1oN)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (𝑤 ·N (𝑧 +N 1o))))
6361, 62mpdan 418 . . . . . . . 8 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (𝑤 ·N (𝑧 +N 1o))))
64 mulidpi 7259 . . . . . . . . . 10 (𝑧N → (𝑧 ·N 1o) = 𝑧)
6564adantr 274 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 1o) = 𝑧)
6665breq1d 3992 . . . . . . . 8 ((𝑧N𝑤N) → ((𝑧 ·N 1o) <N (𝑤 ·N (𝑧 +N 1o)) ↔ 𝑧 <N (𝑤 ·N (𝑧 +N 1o))))
6763, 66bitrd 187 . . . . . . 7 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q𝑧 <N (𝑤 ·N (𝑧 +N 1o))))
6860, 67mpbird 166 . . . . . 6 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q )
6968adantr 274 . . . . 5 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q )
70 breq1 3985 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q → (𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
7170adantl 275 . . . . 5 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
7269, 71mpbird 166 . . . 4 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → 𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q )
73 opeq1 3758 . . . . . . 7 (𝑥 = (𝑧 +N 1o) → ⟨𝑥, 1o⟩ = ⟨(𝑧 +N 1o), 1o⟩)
7473eceq1d 6537 . . . . . 6 (𝑥 = (𝑧 +N 1o) → [⟨𝑥, 1o⟩] ~Q = [⟨(𝑧 +N 1o), 1o⟩] ~Q )
7574breq2d 3994 . . . . 5 (𝑥 = (𝑧 +N 1o) → (𝐴 <Q [⟨𝑥, 1o⟩] ~Q𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
7675rspcev 2830 . . . 4 (((𝑧 +N 1o) ∈ N𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ) → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
776, 72, 76syl2anc 409 . . 3 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
7877exlimivv 1884 . 2 (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
791, 78syl 14 1 (𝐴Q → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wrex 2445  wss 3116  c0 3409  cop 3579   class class class wbr 3982  Ord word 4340  ωcom 4567  (class class class)co 5842  1oc1o 6377   +o coa 6381   ·o comu 6382  [cec 6499  Ncnpi 7213   +N cpli 7214   ·N cmi 7215   <N clti 7216   ~Q ceq 7220  Qcnq 7221   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-enq 7288  df-nqqs 7289  df-ltnqqs 7294
This theorem is referenced by:  prarloclemarch  7359  nqprm  7483  archpr  7584  archrecnq  7604
  Copyright terms: Public domain W3C validator