ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1addc GIF version

Theorem necon1addc 2456
Description: Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon1addc.1 (𝜑 → (DECID 𝜓 → (¬ 𝜓𝐴 = 𝐵)))
Assertion
Ref Expression
necon1addc (𝜑 → (DECID 𝜓 → (𝐴𝐵𝜓)))

Proof of Theorem necon1addc
StepHypRef Expression
1 df-ne 2381 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1addc.1 . . 3 (𝜑 → (DECID 𝜓 → (¬ 𝜓𝐴 = 𝐵)))
3 con1dc 860 . . 3 (DECID 𝜓 → ((¬ 𝜓𝐴 = 𝐵) → (¬ 𝐴 = 𝐵𝜓)))
42, 3sylcom 28 . 2 (𝜑 → (DECID 𝜓 → (¬ 𝐴 = 𝐵𝜓)))
51, 4syl7bi 165 1 (𝜑 → (DECID 𝜓 → (𝐴𝐵𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 838   = wceq 1375  wne 2380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-ne 2381
This theorem is referenced by:  seqf1oglem1  10708  seqf1oglem2  10709
  Copyright terms: Public domain W3C validator