Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeqtri | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
neeqtri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | neeq2i 2340 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶) |
4 | 1, 3 | mpbi 144 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ≠ wne 2324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-gen 1426 ax-4 1487 ax-17 1503 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-ne 2325 |
This theorem is referenced by: neeqtrri 2353 |
Copyright terms: Public domain | W3C validator |