| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > neeqtri | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| neeqtr.1 | ⊢ 𝐴 ≠ 𝐵 | 
| neeqtr.2 | ⊢ 𝐵 = 𝐶 | 
| Ref | Expression | 
|---|---|
| neeqtri | ⊢ 𝐴 ≠ 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neeqtr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | neeqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | neeq2i 2383 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶) | 
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ≠ 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: neeqtrri 2396 | 
| Copyright terms: Public domain | W3C validator |