| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeqtrri | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
| neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | neeqtri 2427 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: pnfnemnf 8197 basendxnplusgndx 13153 plusgndxnmulrndx 13161 basendxnmulrndx 13162 setsvtx 15846 |
| Copyright terms: Public domain | W3C validator |