![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeqtrri | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2089 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | neeqtri 2278 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1287 ≠ wne 2251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-5 1379 ax-gen 1381 ax-4 1443 ax-17 1462 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-cleq 2078 df-ne 2252 |
This theorem is referenced by: pnfnemnf 7463 |
Copyright terms: Public domain | W3C validator |