ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeqtri Unicode version

Theorem neeqtri 2367
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtr.1  |-  A  =/= 
B
neeqtr.2  |-  B  =  C
Assertion
Ref Expression
neeqtri  |-  A  =/= 
C

Proof of Theorem neeqtri
StepHypRef Expression
1 neeqtr.1 . 2  |-  A  =/= 
B
2 neeqtr.2 . . 3  |-  B  =  C
32neeq2i 2356 . 2  |-  ( A  =/=  B  <->  A  =/=  C )
41, 3mpbi 144 1  |-  A  =/= 
C
Colors of variables: wff set class
Syntax hints:    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by:  neeqtrri  2369
  Copyright terms: Public domain W3C validator