ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2i GIF version

Theorem neeq2i 2393
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.)
Hypothesis
Ref Expression
neeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
neeq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . 2 𝐴 = 𝐵
2 neeq2 2391 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-ne 2378
This theorem is referenced by:  neeq12i  2394  neeqtri  2404  exmidsbthrlem  16102
  Copyright terms: Public domain W3C validator