![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeqtrrd | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2094 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | neeqtrd 2284 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ≠ wne 2256 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 df-ne 2257 |
This theorem is referenced by: frecabcl 6178 |
Copyright terms: Public domain | W3C validator |