| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expnprm | GIF version | ||
| Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.) |
| Ref | Expression |
|---|---|
| expnprm | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 9807 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
| 2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ≠ 1) |
| 4 | eluzelz 9739 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
| 5 | 4 | ad2antlr 489 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℤ) |
| 6 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℙ) | |
| 7 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ∈ ℚ) | |
| 8 | prmnn 12640 | . . . . . . . . . . . 12 ⊢ ((𝐴↑𝑁) ∈ ℙ → (𝐴↑𝑁) ∈ ℕ) | |
| 9 | 8 | adantl 277 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℕ) |
| 10 | 9 | nnne0d 9163 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ 0) |
| 11 | eluz2nn 9769 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 12 | 11 | ad2antlr 489 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℕ) |
| 13 | 12 | 0expd 10919 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (0↑𝑁) = 0) |
| 14 | 10, 13 | neeqtrrd 2430 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ (0↑𝑁)) |
| 15 | oveq1 6014 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
| 16 | 15 | necon3i 2448 | . . . . . . . . 9 ⊢ ((𝐴↑𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0) |
| 17 | 14, 16 | syl 14 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ≠ 0) |
| 18 | pcqcl 12837 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) | |
| 19 | 6, 7, 17, 18 | syl12anc 1269 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
| 20 | dvdsmul1 12332 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) | |
| 21 | 5, 19, 20 | syl2anc 411 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 22 | 9 | nncnd 9132 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℂ) |
| 23 | 22 | exp1d 10898 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁)↑1) = (𝐴↑𝑁)) |
| 24 | 23 | oveq2d 6023 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = ((𝐴↑𝑁) pCnt (𝐴↑𝑁))) |
| 25 | 1z 9480 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 26 | pcid 12855 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) | |
| 27 | 6, 25, 26 | sylancl 413 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
| 28 | pcexp 12840 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) | |
| 29 | 6, 7, 17, 5, 28 | syl121anc 1276 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 30 | 24, 27, 29 | 3eqtr3rd 2271 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝑁 · ((𝐴↑𝑁) pCnt 𝐴)) = 1) |
| 31 | 21, 30 | breqtrd 4109 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ 1) |
| 32 | 31 | ex 115 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 ∥ 1)) |
| 33 | 11 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
| 34 | 33 | nnnn0d 9430 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ0) |
| 35 | dvds1 12372 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1)) | |
| 36 | 34, 35 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1)) |
| 37 | 32, 36 | sylibd 149 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 = 1)) |
| 38 | 37 | necon3ad 2442 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ≠ 1 → ¬ (𝐴↑𝑁) ∈ ℙ)) |
| 39 | 3, 38 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 0cc0 8007 1c1 8008 · cmul 8012 ℕcn 9118 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ℤ≥cuz 9730 ℚcq 9822 ↑cexp 10768 ∥ cdvds 12306 ℙcprime 12637 pCnt cpc 12815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 df-prm 12638 df-pc 12816 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |