ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnprm GIF version

Theorem expnprm 12283
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 9542 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
21simprbi 273 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
32adantl 275 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 1)
4 eluzelz 9475 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
54ad2antlr 481 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℤ)
6 simpr 109 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℙ)
7 simpll 519 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ∈ ℚ)
8 prmnn 12042 . . . . . . . . . . . 12 ((𝐴𝑁) ∈ ℙ → (𝐴𝑁) ∈ ℕ)
98adantl 275 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℕ)
109nnne0d 8902 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ 0)
11 eluz2nn 9504 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1211ad2antlr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℕ)
13120expd 10604 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (0↑𝑁) = 0)
1410, 13neeqtrrd 2366 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ (0↑𝑁))
15 oveq1 5849 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
1615necon3i 2384 . . . . . . . . 9 ((𝐴𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0)
1714, 16syl 14 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ≠ 0)
18 pcqcl 12238 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
196, 7, 17, 18syl12anc 1226 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
20 dvdsmul1 11753 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝐴𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
215, 19, 20syl2anc 409 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
229nncnd 8871 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℂ)
2322exp1d 10583 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁)↑1) = (𝐴𝑁))
2423oveq2d 5858 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = ((𝐴𝑁) pCnt (𝐴𝑁)))
25 1z 9217 . . . . . . . 8 1 ∈ ℤ
26 pcid 12255 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
276, 25, 26sylancl 410 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
28 pcexp 12241 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
296, 7, 17, 5, 28syl121anc 1233 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
3024, 27, 293eqtr3rd 2207 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝑁 · ((𝐴𝑁) pCnt 𝐴)) = 1)
3121, 30breqtrd 4008 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ 1)
3231ex 114 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 ∥ 1))
3311adantl 275 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
3433nnnn0d 9167 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
35 dvds1 11791 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3634, 35syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3732, 36sylibd 148 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 = 1))
3837necon3ad 2378 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≠ 1 → ¬ (𝐴𝑁) ∈ ℙ))
393, 38mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cfv 5188  (class class class)co 5842  0cc0 7753  1c1 7754   · cmul 7758  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  cq 9557  cexp 10454  cdvds 11727  cprime 12039   pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator