ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnprm GIF version

Theorem expnprm 12491
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 9669 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
21simprbi 275 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
32adantl 277 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 1)
4 eluzelz 9601 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
54ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℤ)
6 simpr 110 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℙ)
7 simpll 527 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ∈ ℚ)
8 prmnn 12248 . . . . . . . . . . . 12 ((𝐴𝑁) ∈ ℙ → (𝐴𝑁) ∈ ℕ)
98adantl 277 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℕ)
109nnne0d 9027 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ 0)
11 eluz2nn 9631 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1211ad2antlr 489 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℕ)
13120expd 10760 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (0↑𝑁) = 0)
1410, 13neeqtrrd 2394 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ (0↑𝑁))
15 oveq1 5925 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
1615necon3i 2412 . . . . . . . . 9 ((𝐴𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0)
1714, 16syl 14 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ≠ 0)
18 pcqcl 12444 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
196, 7, 17, 18syl12anc 1247 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
20 dvdsmul1 11956 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝐴𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
215, 19, 20syl2anc 411 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
229nncnd 8996 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℂ)
2322exp1d 10739 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁)↑1) = (𝐴𝑁))
2423oveq2d 5934 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = ((𝐴𝑁) pCnt (𝐴𝑁)))
25 1z 9343 . . . . . . . 8 1 ∈ ℤ
26 pcid 12462 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
276, 25, 26sylancl 413 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
28 pcexp 12447 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
296, 7, 17, 5, 28syl121anc 1254 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
3024, 27, 293eqtr3rd 2235 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝑁 · ((𝐴𝑁) pCnt 𝐴)) = 1)
3121, 30breqtrd 4055 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ 1)
3231ex 115 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 ∥ 1))
3311adantl 277 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
3433nnnn0d 9293 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
35 dvds1 11995 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3634, 35syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3732, 36sylibd 149 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 = 1))
3837necon3ad 2406 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≠ 1 → ¬ (𝐴𝑁) ∈ ℙ))
393, 38mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  cfv 5254  (class class class)co 5918  0cc0 7872  1c1 7873   · cmul 7877  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  cq 9684  cexp 10609  cdvds 11930  cprime 12245   pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator