ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnprm GIF version

Theorem expnprm 12522
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 9678 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
21simprbi 275 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
32adantl 277 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 1)
4 eluzelz 9610 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
54ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℤ)
6 simpr 110 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℙ)
7 simpll 527 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ∈ ℚ)
8 prmnn 12278 . . . . . . . . . . . 12 ((𝐴𝑁) ∈ ℙ → (𝐴𝑁) ∈ ℕ)
98adantl 277 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℕ)
109nnne0d 9035 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ 0)
11 eluz2nn 9640 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1211ad2antlr 489 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℕ)
13120expd 10781 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (0↑𝑁) = 0)
1410, 13neeqtrrd 2397 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ (0↑𝑁))
15 oveq1 5929 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
1615necon3i 2415 . . . . . . . . 9 ((𝐴𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0)
1714, 16syl 14 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ≠ 0)
18 pcqcl 12475 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
196, 7, 17, 18syl12anc 1247 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
20 dvdsmul1 11978 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝐴𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
215, 19, 20syl2anc 411 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
229nncnd 9004 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℂ)
2322exp1d 10760 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁)↑1) = (𝐴𝑁))
2423oveq2d 5938 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = ((𝐴𝑁) pCnt (𝐴𝑁)))
25 1z 9352 . . . . . . . 8 1 ∈ ℤ
26 pcid 12493 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
276, 25, 26sylancl 413 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
28 pcexp 12478 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
296, 7, 17, 5, 28syl121anc 1254 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
3024, 27, 293eqtr3rd 2238 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝑁 · ((𝐴𝑁) pCnt 𝐴)) = 1)
3121, 30breqtrd 4059 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ 1)
3231ex 115 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 ∥ 1))
3311adantl 277 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
3433nnnn0d 9302 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
35 dvds1 12018 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3634, 35syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3732, 36sylibd 149 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 = 1))
3837necon3ad 2409 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≠ 1 → ¬ (𝐴𝑁) ∈ ℙ))
393, 38mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cfv 5258  (class class class)co 5922  0cc0 7879  1c1 7880   · cmul 7884  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cq 9693  cexp 10630  cdvds 11952  cprime 12275   pCnt cpc 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-pc 12454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator