| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expnprm | GIF version | ||
| Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.) |
| Ref | Expression |
|---|---|
| expnprm | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 9695 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
| 2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ≠ 1) |
| 4 | eluzelz 9627 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
| 5 | 4 | ad2antlr 489 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℤ) |
| 6 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℙ) | |
| 7 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ∈ ℚ) | |
| 8 | prmnn 12303 | . . . . . . . . . . . 12 ⊢ ((𝐴↑𝑁) ∈ ℙ → (𝐴↑𝑁) ∈ ℕ) | |
| 9 | 8 | adantl 277 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℕ) |
| 10 | 9 | nnne0d 9052 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ 0) |
| 11 | eluz2nn 9657 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 12 | 11 | ad2antlr 489 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℕ) |
| 13 | 12 | 0expd 10798 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (0↑𝑁) = 0) |
| 14 | 10, 13 | neeqtrrd 2397 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ (0↑𝑁)) |
| 15 | oveq1 5932 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
| 16 | 15 | necon3i 2415 | . . . . . . . . 9 ⊢ ((𝐴↑𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0) |
| 17 | 14, 16 | syl 14 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ≠ 0) |
| 18 | pcqcl 12500 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) | |
| 19 | 6, 7, 17, 18 | syl12anc 1247 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
| 20 | dvdsmul1 11995 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) | |
| 21 | 5, 19, 20 | syl2anc 411 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 22 | 9 | nncnd 9021 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℂ) |
| 23 | 22 | exp1d 10777 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁)↑1) = (𝐴↑𝑁)) |
| 24 | 23 | oveq2d 5941 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = ((𝐴↑𝑁) pCnt (𝐴↑𝑁))) |
| 25 | 1z 9369 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 26 | pcid 12518 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) | |
| 27 | 6, 25, 26 | sylancl 413 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
| 28 | pcexp 12503 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) | |
| 29 | 6, 7, 17, 5, 28 | syl121anc 1254 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 30 | 24, 27, 29 | 3eqtr3rd 2238 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝑁 · ((𝐴↑𝑁) pCnt 𝐴)) = 1) |
| 31 | 21, 30 | breqtrd 4060 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ 1) |
| 32 | 31 | ex 115 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 ∥ 1)) |
| 33 | 11 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
| 34 | 33 | nnnn0d 9319 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ0) |
| 35 | dvds1 12035 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1)) | |
| 36 | 34, 35 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1)) |
| 37 | 32, 36 | sylibd 149 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 = 1)) |
| 38 | 37 | necon3ad 2409 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ≠ 1 → ¬ (𝐴↑𝑁) ∈ ℙ)) |
| 39 | 3, 38 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 0cc0 7896 1c1 7897 · cmul 7901 ℕcn 9007 2c2 9058 ℕ0cn0 9266 ℤcz 9343 ℤ≥cuz 9618 ℚcq 9710 ↑cexp 10647 ∥ cdvds 11969 ℙcprime 12300 pCnt cpc 12478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 df-prm 12301 df-pc 12479 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |