Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expnprm | GIF version |
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
expnprm | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b3 9542 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
2 | 1 | simprbi 273 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
3 | 2 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ≠ 1) |
4 | eluzelz 9475 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
5 | 4 | ad2antlr 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℤ) |
6 | simpr 109 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℙ) | |
7 | simpll 519 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ∈ ℚ) | |
8 | prmnn 12042 | . . . . . . . . . . . 12 ⊢ ((𝐴↑𝑁) ∈ ℙ → (𝐴↑𝑁) ∈ ℕ) | |
9 | 8 | adantl 275 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℕ) |
10 | 9 | nnne0d 8902 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ 0) |
11 | eluz2nn 9504 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
12 | 11 | ad2antlr 481 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℕ) |
13 | 12 | 0expd 10604 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (0↑𝑁) = 0) |
14 | 10, 13 | neeqtrrd 2366 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ (0↑𝑁)) |
15 | oveq1 5849 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
16 | 15 | necon3i 2384 | . . . . . . . . 9 ⊢ ((𝐴↑𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0) |
17 | 14, 16 | syl 14 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ≠ 0) |
18 | pcqcl 12238 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) | |
19 | 6, 7, 17, 18 | syl12anc 1226 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
20 | dvdsmul1 11753 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) | |
21 | 5, 19, 20 | syl2anc 409 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
22 | 9 | nncnd 8871 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℂ) |
23 | 22 | exp1d 10583 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁)↑1) = (𝐴↑𝑁)) |
24 | 23 | oveq2d 5858 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = ((𝐴↑𝑁) pCnt (𝐴↑𝑁))) |
25 | 1z 9217 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
26 | pcid 12255 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) | |
27 | 6, 25, 26 | sylancl 410 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
28 | pcexp 12241 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) | |
29 | 6, 7, 17, 5, 28 | syl121anc 1233 | . . . . . . 7 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
30 | 24, 27, 29 | 3eqtr3rd 2207 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝑁 · ((𝐴↑𝑁) pCnt 𝐴)) = 1) |
31 | 21, 30 | breqtrd 4008 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ 1) |
32 | 31 | ex 114 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 ∥ 1)) |
33 | 11 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
34 | 33 | nnnn0d 9167 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ0) |
35 | dvds1 11791 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1)) | |
36 | 34, 35 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1)) |
37 | 32, 36 | sylibd 148 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 = 1)) |
38 | 37 | necon3ad 2378 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ≠ 1 → ¬ (𝐴↑𝑁) ∈ ℙ)) |
39 | 3, 38 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 0cc0 7753 1c1 7754 · cmul 7758 ℕcn 8857 2c2 8908 ℕ0cn0 9114 ℤcz 9191 ℤ≥cuz 9466 ℚcq 9557 ↑cexp 10454 ∥ cdvds 11727 ℙcprime 12039 pCnt cpc 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 df-prm 12040 df-pc 12217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |