| Step | Hyp | Ref
| Expression |
| 1 | | frecabcl.as |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 2 | 1 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = ∅) → 𝐴 ∈ 𝑆) |
| 3 | | peano1 4631 |
. . . . . . . . 9
⊢ ∅
∈ ω |
| 4 | | elex2 2779 |
. . . . . . . . 9
⊢ (∅
∈ ω → ∃𝑎 𝑎 ∈ ω) |
| 5 | | r19.9rmv 3543 |
. . . . . . . . 9
⊢
(∃𝑎 𝑎 ∈ ω → (𝑥 ∈ 𝐴 ↔ ∃𝑚 ∈ ω 𝑥 ∈ 𝐴)) |
| 6 | 3, 4, 5 | mp2b 8 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑚 ∈ ω 𝑥 ∈ 𝐴) |
| 7 | | frecabcl.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝑁⟶𝑆) |
| 8 | | fdm 5416 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:𝑁⟶𝑆 → dom 𝐺 = 𝑁) |
| 9 | 7, 8 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = 𝑁) |
| 10 | 9 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 = ∅) → dom 𝐺 = 𝑁) |
| 11 | | eqeq2 2206 |
. . . . . . . . . . . . . 14
⊢ (𝑁 = ∅ → (dom 𝐺 = 𝑁 ↔ dom 𝐺 = ∅)) |
| 12 | 11 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 = ∅) → (dom 𝐺 = 𝑁 ↔ dom 𝐺 = ∅)) |
| 13 | 10, 12 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 = ∅) → dom 𝐺 = ∅) |
| 14 | 13 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → dom 𝐺 = ∅) |
| 15 | 14 | biantrurd 305 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → (𝑥 ∈ 𝐴 ↔ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 16 | | peano3 4633 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ω → suc 𝑚 ≠ ∅) |
| 17 | 16 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → suc 𝑚 ≠ ∅) |
| 18 | 17, 14 | neeqtrrd 2397 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → suc 𝑚 ≠ dom 𝐺) |
| 19 | 18 | necomd 2453 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → dom 𝐺 ≠ suc 𝑚) |
| 20 | 19 | neneqd 2388 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → ¬ dom 𝐺 = suc 𝑚) |
| 21 | 20 | intnanrd 933 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → ¬ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) |
| 22 | | biorf 745 |
. . . . . . . . . . 11
⊢ (¬
(dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) → ((dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 23 | 21, 22 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → ((dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 24 | 15, 23 | bitrd 188 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 = ∅) ∧ 𝑚 ∈ ω) → (𝑥 ∈ 𝐴 ↔ ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 25 | 24 | rexbidva 2494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = ∅) → (∃𝑚 ∈ ω 𝑥 ∈ 𝐴 ↔ ∃𝑚 ∈ ω ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 26 | 6, 25 | bitrid 192 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = ∅) → (𝑥 ∈ 𝐴 ↔ ∃𝑚 ∈ ω ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 27 | | r19.44mv 3546 |
. . . . . . . 8
⊢
(∃𝑎 𝑎 ∈ ω →
(∃𝑚 ∈ ω
((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 28 | 3, 4, 27 | mp2b 8 |
. . . . . . 7
⊢
(∃𝑚 ∈
ω ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 29 | 26, 28 | bitrdi 196 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = ∅) → (𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 30 | 29 | alrimiv 1888 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = ∅) → ∀𝑥(𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 31 | 2, 30 | jca 306 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = ∅) → (𝐴 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 32 | | eleq1 2259 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑆 ↔ 𝐴 ∈ 𝑆)) |
| 33 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) |
| 34 | 33 | bibi1d 233 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) ↔ (𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 35 | 34 | albidv 1838 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 36 | 32, 35 | anbi12d 473 |
. . . . 5
⊢ (𝑧 = 𝐴 → ((𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) ↔ (𝐴 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))))) |
| 37 | 36 | spcegv 2852 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → ((𝐴 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))))) |
| 38 | 2, 31, 37 | sylc 62 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = ∅) → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 39 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑘) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑘))) |
| 40 | 39 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑘) → ((𝐹‘𝑦) ∈ 𝑆 ↔ (𝐹‘(𝐺‘𝑘)) ∈ 𝑆)) |
| 41 | | frecabcl.fs |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) ∈ 𝑆) |
| 42 | 41 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) ∈ 𝑆) |
| 43 | 7 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → 𝐺:𝑁⟶𝑆) |
| 44 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑘 ∈ V |
| 45 | 44 | sucid 4453 |
. . . . . . . . . . 11
⊢ 𝑘 ∈ suc 𝑘 |
| 46 | | eleq2 2260 |
. . . . . . . . . . 11
⊢ (𝑁 = suc 𝑘 → (𝑘 ∈ 𝑁 ↔ 𝑘 ∈ suc 𝑘)) |
| 47 | 45, 46 | mpbiri 168 |
. . . . . . . . . 10
⊢ (𝑁 = suc 𝑘 → 𝑘 ∈ 𝑁) |
| 48 | 47 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → 𝑘 ∈ 𝑁) |
| 49 | 43, 48 | ffvelcdmd 5701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (𝐺‘𝑘) ∈ 𝑆) |
| 50 | 40, 42, 49 | rspcdva 2873 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (𝐹‘(𝐺‘𝑘)) ∈ 𝑆) |
| 51 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → 𝑘 ∈ ω) |
| 52 | 43, 8 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → dom 𝐺 = 𝑁) |
| 53 | 52 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → dom 𝐺 = 𝑁) |
| 54 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → 𝑁 = suc 𝑘) |
| 55 | 53, 54 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → dom 𝐺 = suc 𝑘) |
| 56 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) |
| 57 | 55, 56 | jca 306 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → (dom 𝐺 = suc 𝑘 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 58 | | suceq 4438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑘 → suc 𝑚 = suc 𝑘) |
| 59 | 58 | eqeq2d 2208 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (dom 𝐺 = suc 𝑚 ↔ dom 𝐺 = suc 𝑘)) |
| 60 | | fveq2 5561 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) |
| 61 | 60 | fveq2d 5565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑘 → (𝐹‘(𝐺‘𝑚)) = (𝐹‘(𝐺‘𝑘))) |
| 62 | 61 | eleq2d 2266 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (𝑥 ∈ (𝐹‘(𝐺‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 63 | 59, 62 | anbi12d 473 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ↔ (dom 𝐺 = suc 𝑘 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))))) |
| 64 | 63 | rspcev 2868 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ω ∧ (dom 𝐺 = suc 𝑘 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘)))) → ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) |
| 65 | 51, 57, 64 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) → ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) |
| 66 | 65 | ex 115 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (𝑥 ∈ (𝐹‘(𝐺‘𝑘)) → ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))))) |
| 67 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) → 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) |
| 68 | 67 | adantl 277 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) |
| 69 | 52 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → dom 𝐺 = 𝑁) |
| 70 | | simprl 529 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → dom 𝐺 = suc 𝑚) |
| 71 | | simpllr 534 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → 𝑁 = suc 𝑘) |
| 72 | 69, 70, 71 | 3eqtr3rd 2238 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → suc 𝑘 = suc 𝑚) |
| 73 | | simplr 528 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → 𝑘 ∈ ω) |
| 74 | 73 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → 𝑘 ∈ ω) |
| 75 | | simplr 528 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → 𝑚 ∈ ω) |
| 76 | | peano4 4634 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ω ∧ 𝑚 ∈ ω) → (suc
𝑘 = suc 𝑚 ↔ 𝑘 = 𝑚)) |
| 77 | 74, 75, 76 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → (suc 𝑘 = suc 𝑚 ↔ 𝑘 = 𝑚)) |
| 78 | 72, 77 | mpbid 147 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → 𝑘 = 𝑚) |
| 79 | 78 | fveq2d 5565 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → (𝐺‘𝑘) = (𝐺‘𝑚)) |
| 80 | 79 | fveq2d 5565 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑚))) |
| 81 | 80 | eleq2d 2266 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → (𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) |
| 82 | 68, 81 | mpbird 167 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) ∧ (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) → 𝑥 ∈ (𝐹‘(𝐺‘𝑘))) |
| 83 | 82 | ex 115 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) ∧ 𝑚 ∈ ω) → ((dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) → 𝑥 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 84 | 83 | rexlimdva 2614 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) → 𝑥 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 85 | 66, 84 | impbid 129 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))))) |
| 86 | 85 | alrimiv 1888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))))) |
| 87 | | peano3 4633 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ω → suc 𝑘 ≠ ∅) |
| 88 | 73, 87 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → suc 𝑘 ≠ ∅) |
| 89 | | neeq1 2380 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 = suc 𝑘 → (𝑁 ≠ ∅ ↔ suc 𝑘 ≠ ∅)) |
| 90 | 89 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (𝑁 ≠ ∅ ↔ suc 𝑘 ≠ ∅)) |
| 91 | 88, 90 | mpbird 167 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → 𝑁 ≠ ∅) |
| 92 | 52, 91 | eqnetrd 2391 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → dom 𝐺 ≠ ∅) |
| 93 | 92 | neneqd 2388 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ¬ dom 𝐺 = ∅) |
| 94 | 93 | intnanrd 933 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ¬ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)) |
| 95 | | biorf 745 |
. . . . . . . . . . . . 13
⊢ (¬
(dom 𝐺 = ∅ ∧
𝑥 ∈ 𝐴) → (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ↔ ((dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))))) |
| 96 | 94, 95 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ↔ ((dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))))) |
| 97 | | orcom 729 |
. . . . . . . . . . . 12
⊢ (((dom
𝐺 = ∅ ∧ 𝑥 ∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 98 | 96, 97 | bitrdi 196 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 99 | 98 | bibi2d 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ((𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) ↔ (𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 100 | 99 | albidv 1838 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → (∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ ∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚)))) ↔ ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 101 | 86, 100 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 102 | 50, 101 | jca 306 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ((𝐹‘(𝐺‘𝑘)) ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 103 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹‘(𝐺‘𝑘)) → (𝑧 ∈ 𝑆 ↔ (𝐹‘(𝐺‘𝑘)) ∈ 𝑆)) |
| 104 | | eleq2 2260 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘(𝐺‘𝑘)) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 105 | 104 | bibi1d 233 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹‘(𝐺‘𝑘)) → ((𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) ↔ (𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 106 | 105 | albidv 1838 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹‘(𝐺‘𝑘)) → (∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))) ↔ ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 107 | 103, 106 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑧 = (𝐹‘(𝐺‘𝑘)) → ((𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) ↔ ((𝐹‘(𝐺‘𝑘)) ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))))) |
| 108 | 107 | spcegv 2852 |
. . . . . . 7
⊢ ((𝐹‘(𝐺‘𝑘)) ∈ 𝑆 → (((𝐹‘(𝐺‘𝑘)) ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))) → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))))) |
| 109 | 50, 102, 108 | sylc 62 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑁 = suc 𝑘) → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 110 | 109 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (𝑁 = suc 𝑘 → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))))) |
| 111 | 110 | rexlimdva 2614 |
. . . 4
⊢ (𝜑 → (∃𝑘 ∈ ω 𝑁 = suc 𝑘 → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴)))))) |
| 112 | 111 | imp 124 |
. . 3
⊢ ((𝜑 ∧ ∃𝑘 ∈ ω 𝑁 = suc 𝑘) → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 113 | | frecabcl.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ω) |
| 114 | | nn0suc 4641 |
. . . 4
⊢ (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑘 ∈ ω 𝑁 = suc 𝑘)) |
| 115 | 113, 114 | syl 14 |
. . 3
⊢ (𝜑 → (𝑁 = ∅ ∨ ∃𝑘 ∈ ω 𝑁 = suc 𝑘)) |
| 116 | 38, 112, 115 | mpjaodan 799 |
. 2
⊢ (𝜑 → ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 117 | | clabel 2323 |
. 2
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆 ↔ ∃𝑧(𝑧 ∈ 𝑆 ∧ ∀𝑥(𝑥 ∈ 𝑧 ↔ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))))) |
| 118 | 116, 117 | sylibr 134 |
1
⊢ (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) |