![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnelne2 | GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
elnelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2443 | . 2 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
2 | nelne2 2438 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | sylan2b 287 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2148 ≠ wne 2347 ∉ wnel 2442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-ne 2348 df-nel 2443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |