ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne2 GIF version

Theorem elnelne2 2465
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 2456 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 2451 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 287 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2160  wne 2360  wnel 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-cleq 2182  df-clel 2185  df-ne 2361  df-nel 2456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator