| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isnmgm | GIF version | ||
| Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) | 
| mgmcl.o | ⊢ ⚬ = (+g‘𝑀) | 
| Ref | Expression | 
|---|---|
| isnmgm | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mgmcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mgmcl.o | . . . . . 6 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | mgmcl 13002 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | 
| 4 | 3 | 3expib 1208 | . . . 4 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) | 
| 5 | 4 | com12 30 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀 ∈ Mgm → (𝑋 ⚬ 𝑌) ∈ 𝐵)) | 
| 6 | 5 | nelcon3d 2473 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ∉ 𝐵 → 𝑀 ∉ Mgm)) | 
| 7 | 6 | 3impia 1202 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∉ wnel 2462 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Mgmcmgm 12997 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mgm 12999 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |