ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnmgm GIF version

Theorem isnmgm 13134
Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
isnmgm ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)

Proof of Theorem isnmgm
StepHypRef Expression
1 mgmcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . . 6 = (+g𝑀)
31, 2mgmcl 13133 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
433expib 1208 . . . 4 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
54com12 30 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑀 ∈ Mgm → (𝑋 𝑌) ∈ 𝐵))
65nelcon3d 2481 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∉ 𝐵𝑀 ∉ Mgm))
763impia 1202 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wnel 2470  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  Mgmcmgm 13128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-nel 2471  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-mgm 13130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator