![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isnmgm | GIF version |
Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.) |
Ref | Expression |
---|---|
mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mgmcl.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmgm | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | mgmcl.o | . . . . . 6 ⊢ ⚬ = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 12942 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
4 | 3 | 3expib 1208 | . . . 4 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
5 | 4 | com12 30 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀 ∈ Mgm → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
6 | 5 | nelcon3d 2470 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ∉ 𝐵 → 𝑀 ∉ Mgm)) |
7 | 6 | 3impia 1202 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∉ wnel 2459 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Mgmcmgm 12937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-nel 2460 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mgm 12939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |