ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neneq GIF version

Theorem neneq 2398
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
neneq (𝐴𝐵 → ¬ 𝐴 = 𝐵)

Proof of Theorem neneq
StepHypRef Expression
1 id 19 . 2 (𝐴𝐵𝐴𝐵)
21neneqd 2397 1 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wne 2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-ne 2377
This theorem is referenced by:  mpodifsnif  6038  gcd2n0cl  12290  isnsgrp  13238  lgsabs1  15516  structiedg0val  15637
  Copyright terms: Public domain W3C validator