ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neneq GIF version

Theorem neneq 2358
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
neneq (𝐴𝐵 → ¬ 𝐴 = 𝐵)

Proof of Theorem neneq
StepHypRef Expression
1 id 19 . 2 (𝐴𝐵𝐴𝐵)
21neneqd 2357 1 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  mpodifsnif  5935  gcd2n0cl  11902  lgsabs1  13580
  Copyright terms: Public domain W3C validator