| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpodifsnif | GIF version | ||
| Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
| Ref | Expression |
|---|---|
| mpodifsnif | ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3765 | . . . . 5 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑖 ∈ 𝐴 ∧ 𝑖 ≠ 𝑋)) | |
| 2 | neneq 2399 | . . . . 5 ⊢ (𝑖 ≠ 𝑋 → ¬ 𝑖 = 𝑋) | |
| 3 | 1, 2 | simplbiim 387 | . . . 4 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑖 = 𝑋) |
| 5 | 4 | iffalsed 3585 | . 2 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷) |
| 6 | 5 | mpoeq3ia 6022 | 1 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∖ cdif 3167 ifcif 3575 {csn 3637 ∈ cmpo 5958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-if 3576 df-sn 3643 df-oprab 5960 df-mpo 5961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |