![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpodifsnif | GIF version |
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
Ref | Expression |
---|---|
mpodifsnif | ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3745 | . . . . 5 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑖 ∈ 𝐴 ∧ 𝑖 ≠ 𝑋)) | |
2 | neneq 2386 | . . . . 5 ⊢ (𝑖 ≠ 𝑋 → ¬ 𝑖 = 𝑋) | |
3 | 1, 2 | simplbiim 387 | . . . 4 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋) |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑖 = 𝑋) |
5 | 4 | iffalsed 3567 | . 2 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷) |
6 | 5 | mpoeq3ia 5983 | 1 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3150 ifcif 3557 {csn 3618 ∈ cmpo 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-if 3558 df-sn 3624 df-oprab 5922 df-mpo 5923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |