Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpodifsnif | GIF version |
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
Ref | Expression |
---|---|
mpodifsnif | ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3710 | . . . . 5 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑖 ∈ 𝐴 ∧ 𝑖 ≠ 𝑋)) | |
2 | neneq 2362 | . . . . 5 ⊢ (𝑖 ≠ 𝑋 → ¬ 𝑖 = 𝑋) | |
3 | 1, 2 | simplbiim 385 | . . . 4 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋) |
4 | 3 | adantr 274 | . . 3 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑖 = 𝑋) |
5 | 4 | iffalsed 3536 | . 2 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷) |
6 | 5 | mpoeq3ia 5918 | 1 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∖ cdif 3118 ifcif 3526 {csn 3583 ∈ cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-if 3527 df-sn 3589 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |