![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lgsabs1 | GIF version |
Description: The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
lgsabs1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgscl 14868 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
2 | 1 | zcnd 9405 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ) |
3 | 2 | abscld 11221 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℝ) |
4 | 1re 7985 | . . 3 ⊢ 1 ∈ ℝ | |
5 | letri3 8067 | . . 3 ⊢ (((abs‘(𝐴 /L 𝑁)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))) | |
6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))) |
7 | lgsle1 14869 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1) | |
8 | 7 | biantrurd 305 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))) |
9 | nnne0 8976 | . . . 4 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ → (abs‘(𝐴 /L 𝑁)) ≠ 0) | |
10 | neneq 2382 | . . . . . . 7 ⊢ ((abs‘(𝐴 /L 𝑁)) ≠ 0 → ¬ (abs‘(𝐴 /L 𝑁)) = 0) | |
11 | 10 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘(𝐴 /L 𝑁)) ≠ 0) → ¬ (abs‘(𝐴 /L 𝑁)) = 0) |
12 | nn0abscl 11125 | . . . . . . . . 9 ⊢ ((𝐴 /L 𝑁) ∈ ℤ → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0) | |
13 | 1, 12 | syl 14 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0) |
14 | elnn0 9207 | . . . . . . . 8 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0)) | |
15 | 13, 14 | sylib 122 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0)) |
16 | 15 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘(𝐴 /L 𝑁)) ≠ 0) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0)) |
17 | 11, 16 | ecased 1360 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘(𝐴 /L 𝑁)) ≠ 0) → (abs‘(𝐴 /L 𝑁)) ∈ ℕ) |
18 | 17 | ex 115 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 → (abs‘(𝐴 /L 𝑁)) ∈ ℕ)) |
19 | 9, 18 | impbid2 143 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ (abs‘(𝐴 /L 𝑁)) ≠ 0)) |
20 | elnnnn0c 9250 | . . . . 5 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))) | |
21 | 20 | baib 920 | . . . 4 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁)))) |
22 | 13, 21 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁)))) |
23 | abs00 11104 | . . . . . 6 ⊢ ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) = 0 ↔ (𝐴 /L 𝑁) = 0)) | |
24 | 23 | necon3bid 2401 | . . . . 5 ⊢ ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0)) |
25 | 2, 24 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0)) |
26 | lgsne0 14892 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | |
27 | 25, 26 | bitrd 188 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) |
28 | 19, 22, 27 | 3bitr3d 218 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ (𝐴 gcd 𝑁) = 1)) |
29 | 6, 8, 28 | 3bitr2d 216 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 class class class wbr 4018 ‘cfv 5235 (class class class)co 5895 ℂcc 7838 ℝcr 7839 0cc0 7840 1c1 7841 ≤ cle 8022 ℕcn 8948 ℕ0cn0 9205 ℤcz 9282 abscabs 11037 gcd cgcd 11974 /L clgs 14851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-mulrcl 7939 ax-addcom 7940 ax-mulcom 7941 ax-addass 7942 ax-mulass 7943 ax-distr 7944 ax-i2m1 7945 ax-0lt1 7946 ax-1rid 7947 ax-0id 7948 ax-rnegex 7949 ax-precex 7950 ax-cnre 7951 ax-pre-ltirr 7952 ax-pre-ltwlin 7953 ax-pre-lttrn 7954 ax-pre-apti 7955 ax-pre-ltadd 7956 ax-pre-mulgt0 7957 ax-pre-mulext 7958 ax-arch 7959 ax-caucvg 7960 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-recs 6329 df-irdg 6394 df-frec 6415 df-1o 6440 df-2o 6441 df-oadd 6444 df-er 6558 df-en 6766 df-dom 6767 df-fin 6768 df-sup 7012 df-inf 7013 df-pnf 8023 df-mnf 8024 df-xr 8025 df-ltxr 8026 df-le 8027 df-sub 8159 df-neg 8160 df-reap 8561 df-ap 8568 df-div 8659 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-n0 9206 df-z 9283 df-uz 9558 df-q 9649 df-rp 9683 df-fz 10038 df-fzo 10172 df-fl 10300 df-mod 10353 df-seqfrec 10476 df-exp 10550 df-ihash 10787 df-cj 10882 df-re 10883 df-im 10884 df-rsqrt 11038 df-abs 11039 df-clim 11318 df-proddc 11590 df-dvds 11826 df-gcd 11975 df-prm 12139 df-phi 12242 df-pc 12316 df-lgs 14852 |
This theorem is referenced by: lgssq 14894 lgssq2 14895 |
Copyright terms: Public domain | W3C validator |