| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsabs1 | GIF version | ||
| Description: The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsabs1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgscl 15409 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
| 2 | 1 | zcnd 9478 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ) |
| 3 | 2 | abscld 11411 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℝ) |
| 4 | 1re 8053 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | letri3 8135 | . . 3 ⊢ (((abs‘(𝐴 /L 𝑁)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))) | |
| 6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))) |
| 7 | lgsle1 15410 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1) | |
| 8 | 7 | biantrurd 305 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))) |
| 9 | nnne0 9046 | . . . 4 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ → (abs‘(𝐴 /L 𝑁)) ≠ 0) | |
| 10 | neneq 2397 | . . . . . . 7 ⊢ ((abs‘(𝐴 /L 𝑁)) ≠ 0 → ¬ (abs‘(𝐴 /L 𝑁)) = 0) | |
| 11 | 10 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘(𝐴 /L 𝑁)) ≠ 0) → ¬ (abs‘(𝐴 /L 𝑁)) = 0) |
| 12 | nn0abscl 11315 | . . . . . . . . 9 ⊢ ((𝐴 /L 𝑁) ∈ ℤ → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0) | |
| 13 | 1, 12 | syl 14 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0) |
| 14 | elnn0 9279 | . . . . . . . 8 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0)) | |
| 15 | 13, 14 | sylib 122 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0)) |
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘(𝐴 /L 𝑁)) ≠ 0) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0)) |
| 17 | 11, 16 | ecased 1361 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘(𝐴 /L 𝑁)) ≠ 0) → (abs‘(𝐴 /L 𝑁)) ∈ ℕ) |
| 18 | 17 | ex 115 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 → (abs‘(𝐴 /L 𝑁)) ∈ ℕ)) |
| 19 | 9, 18 | impbid2 143 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ (abs‘(𝐴 /L 𝑁)) ≠ 0)) |
| 20 | elnnnn0c 9322 | . . . . 5 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))) | |
| 21 | 20 | baib 920 | . . . 4 ⊢ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁)))) |
| 22 | 13, 21 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁)))) |
| 23 | abs00 11294 | . . . . . 6 ⊢ ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) = 0 ↔ (𝐴 /L 𝑁) = 0)) | |
| 24 | 23 | necon3bid 2416 | . . . . 5 ⊢ ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0)) |
| 25 | 2, 24 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0)) |
| 26 | lgsne0 15433 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | |
| 27 | 25, 26 | bitrd 188 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) |
| 28 | 19, 22, 27 | 3bitr3d 218 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ (𝐴 gcd 𝑁) = 1)) |
| 29 | 6, 8, 28 | 3bitr2d 216 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 class class class wbr 4043 ‘cfv 5268 (class class class)co 5934 ℂcc 7905 ℝcr 7906 0cc0 7907 1c1 7908 ≤ cle 8090 ℕcn 9018 ℕ0cn0 9277 ℤcz 9354 abscabs 11227 gcd cgcd 12193 /L clgs 15392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-xor 1395 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-frec 6467 df-1o 6492 df-2o 6493 df-oadd 6496 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 df-sup 7068 df-inf 7069 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-fz 10113 df-fzo 10247 df-fl 10394 df-mod 10449 df-seqfrec 10574 df-exp 10665 df-ihash 10902 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-clim 11509 df-proddc 11781 df-dvds 12018 df-gcd 12194 df-prm 12349 df-phi 12452 df-pc 12527 df-lgs 15393 |
| This theorem is referenced by: lgssq 15435 lgssq2 15436 lgsquad3 15479 |
| Copyright terms: Public domain | W3C validator |