ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsgrp GIF version

Theorem isnsgrp 13425
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
issgrpn0.b 𝐵 = (Base‘𝑀)
issgrpn0.o = (+g𝑀)
Assertion
Ref Expression
isnsgrp ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))

Proof of Theorem isnsgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1024 . . . . . . 7 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑋𝐵)
2 oveq1 6001 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
32oveq1d 6009 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝑥 𝑦) 𝑧) = ((𝑋 𝑦) 𝑧))
4 oveq1 6001 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
53, 4eqeq12d 2244 . . . . . . . . . . 11 (𝑥 = 𝑋 → (((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
65notbid 671 . . . . . . . . . 10 (𝑥 = 𝑋 → (¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
76rexbidv 2531 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ∃𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
87rexbidv 2531 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ∃𝑦𝐵𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
98adantl 277 . . . . . . 7 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑥 = 𝑋) → (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ∃𝑦𝐵𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
10 simpl2 1025 . . . . . . . 8 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑌𝐵)
11 oveq2 6002 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
1211oveq1d 6009 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((𝑋 𝑦) 𝑧) = ((𝑋 𝑌) 𝑧))
13 oveq1 6001 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1413oveq2d 6010 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
1512, 14eqeq12d 2244 . . . . . . . . . . 11 (𝑦 = 𝑌 → (((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
1615notbid 671 . . . . . . . . . 10 (𝑦 = 𝑌 → (¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
1716adantl 277 . . . . . . . . 9 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑦 = 𝑌) → (¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
1817rexbidv 2531 . . . . . . . 8 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑦 = 𝑌) → (∃𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ∃𝑧𝐵 ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
19 simpl3 1026 . . . . . . . . 9 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑍𝐵)
20 oveq2 6002 . . . . . . . . . . . 12 (𝑧 = 𝑍 → ((𝑋 𝑌) 𝑧) = ((𝑋 𝑌) 𝑍))
21 oveq2 6002 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
2221oveq2d 6010 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
2320, 22eqeq12d 2244 . . . . . . . . . . 11 (𝑧 = 𝑍 → (((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2423notbid 671 . . . . . . . . . 10 (𝑧 = 𝑍 → (¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2524adantl 277 . . . . . . . . 9 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑧 = 𝑍) → (¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
26 neneq 2422 . . . . . . . . . 10 (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
2726adantl 277 . . . . . . . . 9 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
2819, 25, 27rspcedvd 2913 . . . . . . . 8 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ∃𝑧𝐵 ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)))
2910, 18, 28rspcedvd 2913 . . . . . . 7 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ∃𝑦𝐵𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)))
301, 9, 29rspcedvd 2913 . . . . . 6 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
31 rexnalim 2519 . . . . . . . . 9 (∃𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3231reximi 2627 . . . . . . . 8 (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ∃𝑦𝐵 ¬ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
33 rexnalim 2519 . . . . . . . 8 (∃𝑦𝐵 ¬ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3432, 33syl 14 . . . . . . 7 (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3534reximi 2627 . . . . . 6 (∃𝑥𝐵𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ∃𝑥𝐵 ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
36 rexnalim 2519 . . . . . 6 (∃𝑥𝐵 ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3730, 35, 363syl 17 . . . . 5 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3837intnand 936 . . . 4 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
39 issgrpn0.b . . . . 5 𝐵 = (Base‘𝑀)
40 issgrpn0.o . . . . 5 = (+g𝑀)
4139, 40issgrp 13422 . . . 4 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
4238, 41sylnibr 681 . . 3 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ 𝑀 ∈ Smgrp)
43 df-nel 2496 . . 3 (𝑀 ∉ Smgrp ↔ ¬ 𝑀 ∈ Smgrp)
4442, 43sylibr 134 . 2 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑀 ∉ Smgrp)
4544ex 115 1 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wnel 2495  wral 2508  wrex 2509  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Mgmcmgm 13373  Smgrpcsgrp 13420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-sgrp 13421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator