ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsgrp GIF version

Theorem isnsgrp 12704
Description: A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
issgrpn0.b 𝐵 = (Base‘𝑀)
issgrpn0.o = (+g𝑀)
Assertion
Ref Expression
isnsgrp ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))

Proof of Theorem isnsgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1000 . . . . . . 7 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑋𝐵)
2 oveq1 5876 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
32oveq1d 5884 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝑥 𝑦) 𝑧) = ((𝑋 𝑦) 𝑧))
4 oveq1 5876 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
53, 4eqeq12d 2192 . . . . . . . . . . 11 (𝑥 = 𝑋 → (((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
65notbid 667 . . . . . . . . . 10 (𝑥 = 𝑋 → (¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
76rexbidv 2478 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ∃𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
87rexbidv 2478 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ∃𝑦𝐵𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
98adantl 277 . . . . . . 7 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑥 = 𝑋) → (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ∃𝑦𝐵𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
10 simpl2 1001 . . . . . . . 8 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑌𝐵)
11 oveq2 5877 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
1211oveq1d 5884 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((𝑋 𝑦) 𝑧) = ((𝑋 𝑌) 𝑧))
13 oveq1 5876 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1413oveq2d 5885 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
1512, 14eqeq12d 2192 . . . . . . . . . . 11 (𝑦 = 𝑌 → (((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
1615notbid 667 . . . . . . . . . 10 (𝑦 = 𝑌 → (¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
1716adantl 277 . . . . . . . . 9 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑦 = 𝑌) → (¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
1817rexbidv 2478 . . . . . . . 8 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑦 = 𝑌) → (∃𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ∃𝑧𝐵 ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
19 simpl3 1002 . . . . . . . . 9 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑍𝐵)
20 oveq2 5877 . . . . . . . . . . . 12 (𝑧 = 𝑍 → ((𝑋 𝑌) 𝑧) = ((𝑋 𝑌) 𝑍))
21 oveq2 5877 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
2221oveq2d 5885 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
2320, 22eqeq12d 2192 . . . . . . . . . . 11 (𝑧 = 𝑍 → (((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2423notbid 667 . . . . . . . . . 10 (𝑧 = 𝑍 → (¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2524adantl 277 . . . . . . . . 9 ((((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) ∧ 𝑧 = 𝑍) → (¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
26 neneq 2369 . . . . . . . . . 10 (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
2726adantl 277 . . . . . . . . 9 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
2819, 25, 27rspcedvd 2847 . . . . . . . 8 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ∃𝑧𝐵 ¬ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)))
2910, 18, 28rspcedvd 2847 . . . . . . 7 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ∃𝑦𝐵𝑧𝐵 ¬ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)))
301, 9, 29rspcedvd 2847 . . . . . 6 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
31 rexnalim 2466 . . . . . . . . 9 (∃𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3231reximi 2574 . . . . . . . 8 (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ∃𝑦𝐵 ¬ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
33 rexnalim 2466 . . . . . . . 8 (∃𝑦𝐵 ¬ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3432, 33syl 14 . . . . . . 7 (∃𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3534reximi 2574 . . . . . 6 (∃𝑥𝐵𝑦𝐵𝑧𝐵 ¬ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ∃𝑥𝐵 ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
36 rexnalim 2466 . . . . . 6 (∃𝑥𝐵 ¬ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ¬ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3730, 35, 363syl 17 . . . . 5 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
3837intnand 931 . . . 4 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
39 issgrpn0.b . . . . 5 𝐵 = (Base‘𝑀)
40 issgrpn0.o . . . . 5 = (+g𝑀)
4139, 40issgrp 12701 . . . 4 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
4238, 41sylnibr 677 . . 3 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → ¬ 𝑀 ∈ Smgrp)
43 df-nel 2443 . . 3 (𝑀 ∉ Smgrp ↔ ¬ 𝑀 ∈ Smgrp)
4442, 43sylibr 134 . 2 (((𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍))) → 𝑀 ∉ Smgrp)
4544ex 115 1 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wne 2347  wnel 2442  wral 2455  wrex 2456  cfv 5212  (class class class)co 5869  Basecbs 12445  +gcplusg 12518  Mgmcmgm 12665  Smgrpcsgrp 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-cnex 7893  ax-resscn 7894  ax-1re 7896  ax-addrcl 7899
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-iota 5174  df-fun 5214  df-fn 5215  df-fv 5220  df-ov 5872  df-inn 8909  df-2 8967  df-ndx 12448  df-slot 12449  df-base 12451  df-plusg 12531  df-sgrp 12700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator