| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1002 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑋 ∈ 𝐵) |
| 2 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝑥 ⚬ 𝑦) = (𝑋 ⚬ 𝑦)) |
| 3 | 2 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑦) ⚬ 𝑧)) |
| 4 | | oveq1 5929 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) |
| 5 | 3, 4 | eqeq12d 2211 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
| 6 | 5 | notbid 668 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
| 7 | 6 | rexbidv 2498 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
| 8 | 7 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
| 9 | 8 | adantl 277 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑥 = 𝑋) → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
| 10 | | simpl2 1003 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑌 ∈ 𝐵) |
| 11 | | oveq2 5930 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (𝑋 ⚬ 𝑦) = (𝑋 ⚬ 𝑌)) |
| 12 | 11 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑧)) |
| 13 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (𝑦 ⚬ 𝑧) = (𝑌 ⚬ 𝑧)) |
| 14 | 13 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → (𝑋 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
| 15 | 12, 14 | eqeq12d 2211 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑌 → (((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
| 16 | 15 | notbid 668 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑌 → (¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
| 17 | 16 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑦 = 𝑌) → (¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
| 18 | 17 | rexbidv 2498 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
| 19 | | simpl3 1004 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑍 ∈ 𝐵) |
| 20 | | oveq2 5930 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑍)) |
| 21 | | oveq2 5930 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑍 → (𝑌 ⚬ 𝑧) = (𝑌 ⚬ 𝑍)) |
| 22 | 21 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → (𝑋 ⚬ (𝑌 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
| 23 | 20, 22 | eqeq12d 2211 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑍 → (((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 24 | 23 | notbid 668 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑍 → (¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 25 | 24 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑧 = 𝑍) → (¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 26 | | neneq 2389 |
. . . . . . . . . 10
⊢ (((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍)) → ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
| 27 | 26 | adantl 277 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
| 28 | 19, 25, 27 | rspcedvd 2874 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
| 29 | 10, 18, 28 | rspcedvd 2874 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) |
| 30 | 1, 9, 29 | rspcedvd 2874 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 31 | | rexnalim 2486 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ¬ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 32 | 31 | reximi 2594 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ∃𝑦 ∈ 𝐵 ¬ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 33 | | rexnalim 2486 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐵 ¬ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ¬ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ¬ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 35 | 34 | reximi 2594 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ∃𝑥 ∈ 𝐵 ¬ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 36 | | rexnalim 2486 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐵 ¬ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ¬ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 37 | 30, 35, 36 | 3syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 38 | 37 | intnand 932 |
. . . 4
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 39 | | issgrpn0.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑀) |
| 40 | | issgrpn0.o |
. . . . 5
⊢ ⚬ =
(+g‘𝑀) |
| 41 | 39, 40 | issgrp 13046 |
. . . 4
⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 42 | 38, 41 | sylnibr 678 |
. . 3
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ 𝑀 ∈ Smgrp) |
| 43 | | df-nel 2463 |
. . 3
⊢ (𝑀 ∉ Smgrp ↔ ¬
𝑀 ∈
Smgrp) |
| 44 | 42, 43 | sylibr 134 |
. 2
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑀 ∉ Smgrp) |
| 45 | 44 | ex 115 |
1
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍)) → 𝑀 ∉ Smgrp)) |