ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notbi GIF version

Theorem notbi 666
Description: Equivalence property for negation. Closed form. (Contributed by BJ, 27-Jan-2020.)
Assertion
Ref Expression
notbi ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem notbi
StepHypRef Expression
1 biimpr 130 . . 3 ((𝜑𝜓) → (𝜓𝜑))
21con3d 631 . 2 ((𝜑𝜓) → (¬ 𝜑 → ¬ 𝜓))
3 biimp 118 . . 3 ((𝜑𝜓) → (𝜑𝜓))
43con3d 631 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
52, 4impbid 129 1 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  notbid  667  notbii  668  ifbi  3556
  Copyright terms: Public domain W3C validator