| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbi | GIF version | ||
| Description: Equivalence property for negation. Closed form. (Contributed by BJ, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| notbi | ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 130 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | 1 | con3d 632 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 → ¬ 𝜓)) |
| 3 | biimp 118 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 4 | 3 | con3d 632 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: notbid 668 notbii 669 ifbi 3582 |
| Copyright terms: Public domain | W3C validator |