ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notbi Unicode version

Theorem notbi 666
Description: Equivalence property for negation. Closed form. (Contributed by BJ, 27-Jan-2020.)
Assertion
Ref Expression
notbi  |-  ( (
ph 
<->  ps )  ->  ( -.  ph  <->  -.  ps )
)

Proof of Theorem notbi
StepHypRef Expression
1 biimpr 130 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
21con3d 631 . 2  |-  ( (
ph 
<->  ps )  ->  ( -.  ph  ->  -.  ps )
)
3 biimp 118 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
43con3d 631 . 2  |-  ( (
ph 
<->  ps )  ->  ( -.  ps  ->  -.  ph )
)
52, 4impbid 129 1  |-  ( (
ph 
<->  ps )  ->  ( -.  ph  <->  -.  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  notbid  667  notbii  668  ifbi  3552
  Copyright terms: Public domain W3C validator