ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtand GIF version

Theorem mtand 666
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypotheses
Ref Expression
mtand.1 (𝜑 → ¬ 𝜒)
mtand.2 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
mtand (𝜑 → ¬ 𝜓)

Proof of Theorem mtand
StepHypRef Expression
1 mtand.1 . 2 (𝜑 → ¬ 𝜒)
2 mtand.2 . . 3 ((𝜑𝜓) → 𝜒)
32ex 115 . 2 (𝜑 → (𝜓𝜒))
41, 3mtod 664 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem is referenced by:  frirrg  4381  phpm  6921  diffisn  6949  tridc  6955  nnnninfeq  7187  pm54.43  7250  addcanprleml  7674  addcanprlemu  7675  iseqf1olemklt  10569  isprm5lem  12279  pw2dvdseulemle  12305  sqne2sq  12315  pythagtriplem4  12406  pythagtriplem11  12412  pythagtriplem13  12414  ctinfomlemom  12584  rrgnz  13764  lssvancl1  13863  ivthinc  14797  pwle2  15489
  Copyright terms: Public domain W3C validator