Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtand | GIF version |
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mtand | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mtod 653 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem is referenced by: frirrg 4328 phpm 6831 diffisn 6859 tridc 6865 nnnninfeq 7092 pm54.43 7146 addcanprleml 7555 addcanprlemu 7556 iseqf1olemklt 10420 isprm5lem 12073 pw2dvdseulemle 12099 sqne2sq 12109 pythagtriplem4 12200 pythagtriplem11 12206 pythagtriplem13 12208 ctinfomlemom 12360 ivthinc 13261 pwle2 13878 |
Copyright terms: Public domain | W3C validator |