![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtand | GIF version |
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mtand | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem is referenced by: frirrg 4381 phpm 6921 diffisn 6949 tridc 6955 nnnninfeq 7187 pm54.43 7250 addcanprleml 7674 addcanprlemu 7675 iseqf1olemklt 10569 isprm5lem 12279 pw2dvdseulemle 12305 sqne2sq 12315 pythagtriplem4 12406 pythagtriplem11 12412 pythagtriplem13 12414 ctinfomlemom 12584 rrgnz 13764 lssvancl1 13863 ivthinc 14797 pwle2 15489 |
Copyright terms: Public domain | W3C validator |