| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | GIF version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mtand | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mtod 667 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: frirrg 4441 phpm 7035 diffisn 7063 tridc 7069 nnnninfeq 7303 pm54.43 7371 addcanprleml 7809 addcanprlemu 7810 iseqf1olemklt 10728 isprm5lem 12671 pw2dvdseulemle 12697 sqne2sq 12707 pythagtriplem4 12799 pythagtriplem11 12805 pythagtriplem13 12807 ctinfomlemom 13006 rrgnz 14240 lssvancl1 14339 ivthinc 15325 g0wlk0 16091 pwle2 16393 nninfnfiinf 16419 |
| Copyright terms: Public domain | W3C validator |