ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtand GIF version

Theorem mtand 660
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypotheses
Ref Expression
mtand.1 (𝜑 → ¬ 𝜒)
mtand.2 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
mtand (𝜑 → ¬ 𝜓)

Proof of Theorem mtand
StepHypRef Expression
1 mtand.1 . 2 (𝜑 → ¬ 𝜒)
2 mtand.2 . . 3 ((𝜑𝜓) → 𝜒)
32ex 114 . 2 (𝜑 → (𝜓𝜒))
41, 3mtod 658 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem is referenced by:  frirrg  4335  phpm  6843  diffisn  6871  tridc  6877  nnnninfeq  7104  pm54.43  7167  addcanprleml  7576  addcanprlemu  7577  iseqf1olemklt  10441  isprm5lem  12095  pw2dvdseulemle  12121  sqne2sq  12131  pythagtriplem4  12222  pythagtriplem11  12228  pythagtriplem13  12230  ctinfomlemom  12382  ivthinc  13415  pwle2  14031
  Copyright terms: Public domain W3C validator