| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | GIF version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mtand | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: frirrg 4385 phpm 6926 diffisn 6954 tridc 6960 nnnninfeq 7194 pm54.43 7257 addcanprleml 7681 addcanprlemu 7682 iseqf1olemklt 10590 isprm5lem 12309 pw2dvdseulemle 12335 sqne2sq 12345 pythagtriplem4 12437 pythagtriplem11 12443 pythagtriplem13 12445 ctinfomlemom 12644 rrgnz 13824 lssvancl1 13923 ivthinc 14879 pwle2 15643 |
| Copyright terms: Public domain | W3C validator |