| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | GIF version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mtand | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mtod 667 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: frirrg 4418 phpm 6995 diffisn 7023 tridc 7029 nnnninfeq 7263 pm54.43 7331 addcanprleml 7769 addcanprlemu 7770 iseqf1olemklt 10687 isprm5lem 12629 pw2dvdseulemle 12655 sqne2sq 12665 pythagtriplem4 12757 pythagtriplem11 12763 pythagtriplem13 12765 ctinfomlemom 12964 rrgnz 14197 lssvancl1 14296 ivthinc 15282 pwle2 16275 nninfnfiinf 16300 |
| Copyright terms: Public domain | W3C validator |