| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | GIF version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mtand | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mtod 665 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: frirrg 4401 phpm 6969 diffisn 6997 tridc 7003 nnnninfeq 7237 pm54.43 7305 addcanprleml 7734 addcanprlemu 7735 iseqf1olemklt 10650 isprm5lem 12507 pw2dvdseulemle 12533 sqne2sq 12543 pythagtriplem4 12635 pythagtriplem11 12641 pythagtriplem13 12643 ctinfomlemom 12842 rrgnz 14074 lssvancl1 14173 ivthinc 15159 pwle2 16009 nninfnfiinf 16034 |
| Copyright terms: Public domain | W3C validator |