| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3dimp | GIF version | ||
| Description: Variant of con3d 632 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 632 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: stoic1a 1438 nelneq 2297 nelneq2 2298 nelss 3244 nnnninf 7192 bcpasc 10858 fiinfnf1o 10878 nnoddn2prmb 12431 pcprod 12515 lgsdir 15276 2lgslem2 15333 2lgs 15345 pw1nct 15647 |
| Copyright terms: Public domain | W3C validator |