Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con3dimp | GIF version |
Description: Variant of con3d 626 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 626 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-in1 609 ax-in2 610 |
This theorem is referenced by: nelneq 2271 nelneq2 2272 nelss 3208 nnnninf 7102 bcpasc 10700 fiinfnf1o 10720 nnoddn2prmb 12216 pcprod 12298 lgsdir 13730 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |