| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oibabs | GIF version | ||
| Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| oibabs | ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.67-2 714 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | ibd 178 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 → 𝜓)) |
| 3 | olc 712 | . . . . 5 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 4 | 3 | imim1i 60 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜓 → (𝜑 ↔ 𝜓))) |
| 5 | ibibr 246 | . . . 4 ⊢ ((𝜓 → 𝜑) ↔ (𝜓 → (𝜑 ↔ 𝜓))) | |
| 6 | 4, 5 | sylibr 134 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜓 → 𝜑)) |
| 7 | 2, 6 | impbid 129 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) |
| 8 | ax-1 6 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓))) | |
| 9 | 7, 8 | impbii 126 | 1 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |