Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oibabs | GIF version |
Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
oibabs | ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.67-2 703 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 → (𝜑 ↔ 𝜓))) | |
2 | 1 | ibd 177 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 → 𝜓)) |
3 | olc 701 | . . . . 5 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
4 | 3 | imim1i 60 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜓 → (𝜑 ↔ 𝜓))) |
5 | ibibr 245 | . . . 4 ⊢ ((𝜓 → 𝜑) ↔ (𝜓 → (𝜑 ↔ 𝜓))) | |
6 | 4, 5 | sylibr 133 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜓 → 𝜑)) |
7 | 2, 6 | impbid 128 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) |
8 | ax-1 6 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓))) | |
9 | 7, 8 | impbii 125 | 1 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |