| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordi | GIF version | ||
| Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ordi | ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | orim2i 762 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) → (𝜑 ∨ 𝜓)) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 4 | 3 | orim2i 762 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) → (𝜑 ∨ 𝜒)) |
| 5 | 2, 4 | jca 306 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) → ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| 6 | orc 713 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∧ 𝜒))) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜑) → (𝜑 ∨ (𝜓 ∧ 𝜒))) |
| 8 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∨ (𝜓 ∧ 𝜒))) |
| 9 | olc 712 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 ∨ (𝜓 ∧ 𝜒))) | |
| 10 | 8, 9 | jaoian 796 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) → (𝜑 ∨ (𝜓 ∧ 𝜒))) |
| 11 | 7, 10 | jaodan 798 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 ∧ 𝜒))) |
| 12 | 5, 11 | impbii 126 | 1 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ordir 818 orddi 821 pm5.63dc 948 pm4.43 951 orbididc 955 undi 3411 undif4 3513 elnn1uz2 9681 |
| Copyright terms: Public domain | W3C validator |