| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.85dc | GIF version | ||
| Description: Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| pm2.85dc | ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | orc 713 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ (𝜓 → 𝜒))) | |
| 3 | 2 | a1d 22 | . . 3 ⊢ (𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | 
| 4 | olc 712 | . . . . . 6 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 5 | 4 | imim1i 60 | . . . . 5 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜓 → (𝜑 ∨ 𝜒))) | 
| 6 | orel1 726 | . . . . 5 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜒) → 𝜒)) | |
| 7 | 5, 6 | syl9r 73 | . . . 4 ⊢ (¬ 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜓 → 𝜒))) | 
| 8 | olc 712 | . . . 4 ⊢ ((𝜓 → 𝜒) → (𝜑 ∨ (𝜓 → 𝜒))) | |
| 9 | 7, 8 | syl6 33 | . . 3 ⊢ (¬ 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | 
| 10 | 3, 9 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | 
| 11 | 1, 10 | sylbi 121 | 1 ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: orimdidc 907 | 
| Copyright terms: Public domain | W3C validator |