Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.85dc | GIF version |
Description: Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.) |
Ref | Expression |
---|---|
pm2.85dc | ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 830 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
2 | orc 707 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ (𝜓 → 𝜒))) | |
3 | 2 | a1d 22 | . . 3 ⊢ (𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) |
4 | olc 706 | . . . . . 6 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
5 | 4 | imim1i 60 | . . . . 5 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜓 → (𝜑 ∨ 𝜒))) |
6 | orel1 720 | . . . . 5 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜒) → 𝜒)) | |
7 | 5, 6 | syl9r 73 | . . . 4 ⊢ (¬ 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜓 → 𝜒))) |
8 | olc 706 | . . . 4 ⊢ ((𝜓 → 𝜒) → (𝜑 ∨ (𝜓 → 𝜒))) | |
9 | 7, 8 | syl6 33 | . . 3 ⊢ (¬ 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) |
10 | 3, 9 | jaoi 711 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) |
11 | 1, 10 | sylbi 120 | 1 ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-dc 830 |
This theorem is referenced by: orimdidc 901 |
Copyright terms: Public domain | W3C validator |