ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.18 GIF version

Theorem pm13.18 2445
Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.18 ((𝐴 = 𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem pm13.18
StepHypRef Expression
1 eqeq1 2200 . . . 4 (𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
21biimprd 158 . . 3 (𝐴 = 𝐵 → (𝐵 = 𝐶𝐴 = 𝐶))
32necon3d 2408 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
43imp 124 1 ((𝐴 = 𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ne 2365
This theorem is referenced by:  pm13.181  2446
  Copyright terms: Public domain W3C validator