Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm13.18 | GIF version |
Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
Ref | Expression |
---|---|
pm13.18 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimprd 157 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐵 = 𝐶 → 𝐴 = 𝐶)) |
3 | 2 | necon3d 2380 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 → 𝐵 ≠ 𝐶)) |
4 | 3 | imp 123 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: pm13.181 2418 |
Copyright terms: Public domain | W3C validator |