ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.18 GIF version

Theorem pm13.18 2417
Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.18 ((𝐴 = 𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem pm13.18
StepHypRef Expression
1 eqeq1 2172 . . . 4 (𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
21biimprd 157 . . 3 (𝐴 = 𝐵 → (𝐵 = 𝐶𝐴 = 𝐶))
32necon3d 2380 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
43imp 123 1 ((𝐴 = 𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by:  pm13.181  2418
  Copyright terms: Public domain W3C validator