ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.181 GIF version

Theorem pm13.181 2406
Description: Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.181 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem pm13.181
StepHypRef Expression
1 eqcom 2156 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
2 pm13.18 2405 . 2 ((𝐵 = 𝐴𝐵𝐶) → 𝐴𝐶)
31, 2sylanb 282 1 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wne 2324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1424  ax-gen 1426  ax-4 1487  ax-17 1503  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-cleq 2147  df-ne 2325
This theorem is referenced by:  fzprval  9962  mod2eq1n2dvds  11743
  Copyright terms: Public domain W3C validator