| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm13.181 | GIF version | ||
| Description: Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm13.181 | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | pm13.18 2448 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
| 3 | 1, 2 | sylanb 284 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: nninfisollemne 7197 fzprval 10157 mod2eq1n2dvds 12044 |
| Copyright terms: Public domain | W3C validator |