ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.181 GIF version

Theorem pm13.181 2449
Description: Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.181 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem pm13.181
StepHypRef Expression
1 eqcom 2198 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
2 pm13.18 2448 . 2 ((𝐵 = 𝐴𝐵𝐶) → 𝐴𝐶)
31, 2sylanb 284 1 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-ne 2368
This theorem is referenced by:  nninfisollemne  7197  fzprval  10157  mod2eq1n2dvds  12044
  Copyright terms: Public domain W3C validator