Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimprd | GIF version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimprd | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | biimprd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibr 155 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl6bir 163 mpbird 166 sylibrd 168 sylbird 169 imbi1d 230 biimpar 295 mtbid 662 mtbii 664 orbi2d 780 pm4.55dc 928 pm3.11dc 947 prlem1 963 nfimd 1573 dral1 1718 cbvalv1 1739 cbvalh 1741 ax16i 1846 speiv 1850 a16g 1852 cbvalvw 1907 cbvexvw 1908 cleqh 2266 pm13.18 2417 rspcimdv 2831 rspcimedv 2832 rspcedv 2834 moi2 2907 moi 2909 eqrd 3160 abnexg 4424 ralxfrd 4440 ralxfr2d 4442 rexxfr2d 4443 elres 4920 2elresin 5299 f1ocnv 5445 tz6.12c 5516 fvun1 5552 dffo4 5633 isores3 5783 tposfo2 6235 issmo2 6257 iordsmo 6265 smoel2 6271 fiintim 6894 ismkvnex 7119 prarloclemarch 7359 genprndl 7462 genprndu 7463 ltpopr 7536 ltsopr 7537 recexprlem1ssl 7574 recexprlem1ssu 7575 aptiprlemu 7581 lttrsr 7703 nnmulcl 8878 nnnegz 9194 eluzdc 9548 negm 9553 iccid 9861 icoshft 9926 fzen 9978 elfz2nn0 10047 elfzom1p1elfzo 10149 flqeqceilz 10253 zmodidfzoimp 10289 caucvgre 10923 qdenre 11144 dvdsval2 11730 negdvdsb 11747 muldvds2 11757 dvdsabseq 11785 bezoutlemaz 11936 bezoutlembz 11937 rplpwr 11960 alginv 11979 algfx 11984 coprmgcdb 12020 divgcdcoprm0 12033 prmgt1 12064 oddprmgt2 12066 rpexp1i 12086 2sqpwodd 12108 qnumdencl 12119 phiprmpw 12154 prmdiveq 12168 prm23lt5 12195 pcmpt 12273 infpnlem1 12289 oddennn 12325 nninfdclemf1 12385 cnpnei 12859 bl2in 13043 addcncntoplem 13191 rescncf 13208 limcresi 13275 cnplimcim 13276 efltlemlt 13335 ioocosf1o 13415 uzdcinzz 13679 bj-charfunbi 13693 bj-omssind 13817 bj-bdfindes 13831 bj-nntrans 13833 bj-nnelirr 13835 bj-omtrans 13838 setindis 13849 bdsetindis 13851 bj-inf2vnlem3 13854 bj-inf2vnlem4 13855 bj-findis 13861 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |