Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimprd | GIF version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimprd | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | biimprd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibr 155 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl6bir 163 mpbird 166 sylibrd 168 sylbird 169 imbi1d 230 biimpar 295 mtbid 667 mtbii 669 orbi2d 785 pm4.55dc 933 pm3.11dc 952 prlem1 968 nfimd 1578 dral1 1723 cbvalv1 1744 cbvalh 1746 ax16i 1851 speiv 1855 a16g 1857 cbvalvw 1912 cbvexvw 1913 cleqh 2270 pm13.18 2421 rspcimdv 2835 rspcimedv 2836 rspcedv 2838 moi2 2911 moi 2913 eqrd 3165 abnexg 4429 ralxfrd 4445 ralxfr2d 4447 rexxfr2d 4448 elres 4925 2elresin 5307 f1ocnv 5453 tz6.12c 5524 fvun1 5560 dffo4 5641 isores3 5791 tposfo2 6243 issmo2 6265 iordsmo 6273 smoel2 6279 fiintim 6902 ismkvnex 7127 prarloclemarch 7367 genprndl 7470 genprndu 7471 ltpopr 7544 ltsopr 7545 recexprlem1ssl 7582 recexprlem1ssu 7583 aptiprlemu 7589 lttrsr 7711 nnmulcl 8886 nnnegz 9202 eluzdc 9556 negm 9561 iccid 9869 icoshft 9934 fzen 9986 elfz2nn0 10055 elfzom1p1elfzo 10157 flqeqceilz 10261 zmodidfzoimp 10297 caucvgre 10932 qdenre 11153 dvdsval2 11739 negdvdsb 11756 muldvds2 11766 dvdsabseq 11794 bezoutlemaz 11945 bezoutlembz 11946 rplpwr 11969 alginv 11988 algfx 11993 coprmgcdb 12029 divgcdcoprm0 12042 prmgt1 12073 oddprmgt2 12075 rpexp1i 12095 2sqpwodd 12117 qnumdencl 12128 phiprmpw 12163 prmdiveq 12177 prm23lt5 12204 pcmpt 12282 infpnlem1 12298 oddennn 12334 nninfdclemf1 12394 cnpnei 12972 bl2in 13156 addcncntoplem 13304 rescncf 13321 limcresi 13388 cnplimcim 13389 efltlemlt 13448 ioocosf1o 13528 uzdcinzz 13792 bj-charfunbi 13806 bj-omssind 13930 bj-bdfindes 13944 bj-nntrans 13946 bj-nnelirr 13948 bj-omtrans 13951 setindis 13962 bdsetindis 13964 bj-inf2vnlem3 13967 bj-inf2vnlem4 13968 bj-findis 13974 bj-findes 13976 |
Copyright terms: Public domain | W3C validator |