![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimprd | GIF version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimprd | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | biimprd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | imbitrrid 156 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimtrrdi 164 mpbird 167 sylibrd 169 sylbird 170 imbi1d 231 biimpar 297 mtbid 673 mtbii 675 orbi2d 791 pm3.11dc 959 prlem1 975 nfimd 1596 dral1 1741 cbvalv1 1762 cbvalh 1764 ax16i 1869 speiv 1873 a16g 1875 cbvalvw 1931 cbvexvw 1932 cleqh 2293 pm13.18 2445 rspcimdv 2865 rspcimedv 2866 rspcedv 2868 moi2 2941 moi 2943 eqrd 3197 abnexg 4477 ralxfrd 4493 ralxfr2d 4495 rexxfr2d 4496 elres 4978 2elresin 5365 f1ocnv 5513 tz6.12c 5584 fvun1 5623 dffo4 5706 isores3 5858 tposfo2 6320 issmo2 6342 iordsmo 6350 smoel2 6356 fiintim 6985 ismkvnex 7214 prarloclemarch 7478 genprndl 7581 genprndu 7582 ltpopr 7655 ltsopr 7656 recexprlem1ssl 7693 recexprlem1ssu 7694 aptiprlemu 7700 lttrsr 7822 aptap 8669 rerecapb 8862 nnmulcl 9003 nnnegz 9320 eluzdc 9675 negm 9680 iccid 9991 icoshft 10056 fzen 10109 elfz2nn0 10178 elfzom1p1elfzo 10281 flqeqceilz 10389 zmodidfzoimp 10425 caucvgre 11125 qdenre 11346 dvdsval2 11933 negdvdsb 11950 muldvds2 11960 dvdsabseq 11989 bezoutlemaz 12140 bezoutlembz 12141 rplpwr 12164 alginv 12185 algfx 12190 coprmgcdb 12226 divgcdcoprm0 12239 prmgt1 12270 oddprmgt2 12272 rpexp1i 12292 2sqpwodd 12314 qnumdencl 12325 phiprmpw 12360 prmdiveq 12374 prm23lt5 12401 pcmpt 12481 infpnlem1 12497 oddennn 12549 nninfdclemf1 12609 imasaddfnlemg 12897 aprcotr 13781 cnpnei 14387 bl2in 14571 addcncntoplem 14719 rescncf 14736 limcresi 14820 cnplimcim 14821 efltlemlt 14909 ioocosf1o 14989 uzdcinzz 15290 bj-charfunbi 15303 bj-omssind 15427 bj-bdfindes 15441 bj-nntrans 15443 bj-nnelirr 15445 bj-omtrans 15448 setindis 15459 bdsetindis 15461 bj-inf2vnlem3 15464 bj-inf2vnlem4 15465 bj-findis 15471 bj-findes 15473 |
Copyright terms: Public domain | W3C validator |