| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3d | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
| Ref | Expression |
|---|---|
| necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
| 2 | 1 | necon3ad 2422 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2381 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1375 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2381 |
| This theorem is referenced by: necon3i 2428 pm13.18 2461 ssn0 3514 suppssfv 6184 suppssov1 6185 nnmord 6633 findcard2 7019 findcard2s 7020 addn0nid 8488 nn0n0n1ge2 9485 xnegdi 10032 efne0 12155 divgcdcoprmex 12590 pceulem 12783 pcqmul 12792 pcqcl 12795 pcaddlem 12828 pcadd 12829 grpinvnz 13570 ringelnzr 14116 lmodfopne 14255 lmodindp1 14357 |
| Copyright terms: Public domain | W3C validator |