| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3d | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
| Ref | Expression |
|---|---|
| necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
| 2 | 1 | necon3ad 2419 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2378 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2378 |
| This theorem is referenced by: necon3i 2425 pm13.18 2458 ssn0 3504 suppssfv 6161 suppssov1 6162 nnmord 6610 findcard2 6993 findcard2s 6994 addn0nid 8453 nn0n0n1ge2 9450 xnegdi 9997 efne0 12033 divgcdcoprmex 12468 pceulem 12661 pcqmul 12670 pcqcl 12673 pcaddlem 12706 pcadd 12707 grpinvnz 13447 ringelnzr 13993 lmodfopne 14132 lmodindp1 14234 |
| Copyright terms: Public domain | W3C validator |