| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3d | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
| Ref | Expression |
|---|---|
| necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
| 2 | 1 | necon3ad 2442 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: necon3i 2448 pm13.18 2481 ssn0 3534 suppssfv 6220 suppssov1 6221 nnmord 6671 findcard2 7059 findcard2s 7060 addn0nid 8528 nn0n0n1ge2 9525 xnegdi 10072 efne0 12197 divgcdcoprmex 12632 pceulem 12825 pcqmul 12834 pcqcl 12837 pcaddlem 12870 pcadd 12871 grpinvnz 13612 ringelnzr 14159 lmodfopne 14298 lmodindp1 14400 |
| Copyright terms: Public domain | W3C validator |