ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3d GIF version

Theorem necon3d 2444
Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.)
Hypothesis
Ref Expression
necon3d.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3d (𝜑 → (𝐶𝐷𝐴𝐵))

Proof of Theorem necon3d
StepHypRef Expression
1 necon3d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
21necon3ad 2442 . 2 (𝜑 → (𝐶𝐷 → ¬ 𝐴 = 𝐵))
3 df-ne 2401 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3imbitrrdi 162 1 (𝜑 → (𝐶𝐷𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  necon3i  2448  pm13.18  2481  ssn0  3534  suppssfv  6220  suppssov1  6221  nnmord  6671  findcard2  7059  findcard2s  7060  addn0nid  8528  nn0n0n1ge2  9525  xnegdi  10072  efne0  12197  divgcdcoprmex  12632  pceulem  12825  pcqmul  12834  pcqcl  12837  pcaddlem  12870  pcadd  12871  grpinvnz  13612  ringelnzr  14159  lmodfopne  14298  lmodindp1  14400
  Copyright terms: Public domain W3C validator