![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon3d | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
Ref | Expression |
---|---|
necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
2 | 1 | necon3ad 2406 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: necon3i 2412 pm13.18 2445 ssn0 3490 suppssfv 6128 suppssov1 6129 nnmord 6572 findcard2 6947 findcard2s 6948 addn0nid 8395 nn0n0n1ge2 9390 xnegdi 9937 efne0 11824 divgcdcoprmex 12243 pceulem 12435 pcqmul 12444 pcqcl 12447 pcaddlem 12480 pcadd 12481 grpinvnz 13146 ringelnzr 13686 lmodfopne 13825 lmodindp1 13927 |
Copyright terms: Public domain | W3C validator |