Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3d | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
Ref | Expression |
---|---|
necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
2 | 1 | necon3ad 2377 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2336 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | syl6ibr 161 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ≠ wne 2335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2336 |
This theorem is referenced by: necon3i 2383 pm13.18 2416 ssn0 3450 suppssfv 6045 suppssov1 6046 nnmord 6481 findcard2 6851 findcard2s 6852 addn0nid 8268 nn0n0n1ge2 9257 xnegdi 9800 efne0 11615 divgcdcoprmex 12030 pceulem 12222 pcqmul 12231 pcqcl 12234 pcaddlem 12266 pcadd 12267 |
Copyright terms: Public domain | W3C validator |