ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif4 GIF version

Theorem undif4 3527
Description: Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undif4 ((𝐴𝐶) = ∅ → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶))

Proof of Theorem undif4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm2.621 749 . . . . . . 7 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴 ∨ ¬ 𝑥𝐶) → ¬ 𝑥𝐶))
2 olc 713 . . . . . . 7 𝑥𝐶 → (𝑥𝐴 ∨ ¬ 𝑥𝐶))
31, 2impbid1 142 . . . . . 6 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴 ∨ ¬ 𝑥𝐶) ↔ ¬ 𝑥𝐶))
43anbi2d 464 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐶) → (((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶)))
5 eldif 3179 . . . . . . 7 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65orbi2i 764 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 ordi 818 . . . . . 6 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
86, 7bitri 184 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
9 elun 3318 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
109anbi1i 458 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
114, 8, 103bitr4g 223 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶)))
12 elun 3318 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
13 eldif 3179 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶))
1411, 12, 133bitr4g 223 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐶) → (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
1514alimi 1479 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐶) → ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
16 disj1 3515 . 2 ((𝐴𝐶) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐶))
17 dfcleq 2200 . 2 ((𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
1815, 16, 173imtr4i 201 1 ((𝐴𝐶) = ∅ → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  wal 1371   = wceq 1373  wcel 2177  cdif 3167  cun 3168  cin 3169  c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-nul 3465
This theorem is referenced by:  phplem1  6964
  Copyright terms: Public domain W3C validator